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1. Introduction
Global biodiversity has diminished in recent decades as a 
result of habitat degradation and fragmentation, climate 
change, alien species, pollution, overexploitation, and 
increasing human population (Primack, 2008; Barnosky 
et al., 2011). Since habitat degradation is the most 
important factor in decreasing wildlife populations, most 
management practices have been focused on managing 
habitat. Habitat rehabilitation and selection of areas for 
reintroduction of threatened species require information 
on species’ geographical ranges (Papes and Gaubert, 
2007; Polak and Saltz, 2011). In recent years many species 
distribution models (SDMs) have been used in ecology 
to address questions related to selecting conservation 
sites, reintroduction, and developing effective species 
conservation measures (Guisan et al., 2006; Carnaval and 
Moritz, 2008; Franklin, 2009). 

Grid size (spatial resolution) is an important factor that 
may affect predictions of species’ distributions (Guisan 
et al., 2007). Due to the scale-based nature of species’ 
responses to ecological patterns and scale dependence 

of conservation goals, wildlife populations should be 
considered at various scales to obtain more accurate 
information. In other words, selecting an appropriate 
spatial scale is one of the key problems in SDMs (Scott et 
al., 2002; Graf et al., 2005; Cabeza et al., 2010). The spatial 
scale of SDMs affects model performance and the ability 
to obtain accurate information of the details of surface 
distributions. There are few studies on the effects of losing 
information when gathering spatial data at coarser scales 
(Henderson-Sellers et al., 1982; Turner et al., 1989; Guisan 
et al., 2007). Wiens (1989) noted that choice of spatial scale 
is critical in analyzing species–environment relations. 
Guisan and Thuiller (2005) described it as a central 
problem in bioclimatic modeling. 

Grain and extent size are two concepts that have 
recently been used in SDMs. Based on the definition of

 

Song et al. (2013), grain size or resolution is the unit size 
of environmental layers used in modeling, and extent size 
refers to the spatial extent of the analysis (size of domain) 

used in the calculation of an environmental value for the 

given grid. Therefore, it is likely that predicting a species’ 

Abstract: The spatial scale of environmental layers is an important factor to consider in developing an understanding of ecological 

processes. This study employed Maxent modeling to investigate the geographic distribution of goitered gazelle, Gazella subgutturosa 

(Güldenstädt, 1780), in central Iran using uncorrelated variables at a spatial resolution of 250 m. We used spatial downscaling to 

downscale WorldClim data to 250-m resolution. We evaluated the sensitivity of the model to different grain and extent sizes from 250 m 

to 3 km. We compared the performance of the model at different scales using suitability indexes (AUC) and predicted habitat areas. Two 

models performed with AUC values higher than random (AUC
un

 = 0.957, AUC
pu

 = 0.953). The distribution of potential habitats at 250-

m grid size was strongly influenced by bioclimatic data, vegetation type and density, and elevation. There were few spatial divergences 

between uncorrelated and pruned models. The mean AUC across eight different spatial scales ranged from 0.936 to 0.959. There was a 

significant negative correlation between grain size and AUC (R2 = 0.57). An increase in grain size increased the predicted habitat area. 

The extent size and AUC showed a positive correlation (R2 = 0.18). Predicted suitability habitat also decreased as extent size increased 

(R2 = 0.49). Spatial congruence AUC fluctuated within a small range and the maximum difference occurred between models of 1 × 1 

and 2.5 × 2.5 km. These results showed that an increase in extent size is more accurate than an increase in grain size, and the maximum 

accuracy for predicting distribution of goitered gazelle in Iran was obtained if the grain size and extent size were 750 m.

Key words: Downscaling, extent size, grain size, maxent, goitered gazelle, scale effect, species distribution modeling

Received: 25.05.2015              Accepted/Published Online: 24.12.2015              Final Version: 09.06.2016

Research Article



KHOSRAVI et al. / Turk J Zool

575

distribution based on an appropriate grain and extent 

size improves the performance of the SDM. Choosing an 

appropriate grain size for modeling involves addressing 

such issues as grid cell size of available predictors and 

characteristics of the species data (Graham et al., 2004; 

Linke et al., 2005; Huettmann and Diamond, 2006).

Some environmental variables, especially climatic 

data, are typically available at a coarse spatial scale and 

may be less effective for fine-scale species distribution 

modeling (Davis et al., 2010). The recent development 

of downscaling methods for environmental variables has 

led to the possibility of using these variables in fine-scale 

environmental modeling. Downscaling is the process of 

transferring the climate information from a coarse spatial 

scale to a fine scale (Flint and Flint, 2012). In the present 

study, a method developed to include spatial gradients was 

used to downscale bioclimatic variables to a fine spatial 

resolution.  

Data on species’ absence are often unavailable or 

unreliable (Engler et al., 2004) for threatened species. 

Therefore, modeling techniques that require presence-

only data such as maximum entropy modeling (Maxent) 

(Phillips et al., 2006) or genetic algorithm for rule set 

prediction (GARP; Stockwell and Peters, 1999) have been 

widely used to predict habitat distributions (Hirzel et al., 

2002). In this study we chose to use Maxent for several 

reasons. It only requires species’ occurrence points (Elith 

et al., 2010), it uses continuous and categorical data 

and the interactions between them, it is not sensitive to 

collinearity between environmental variables (Philips et 

al., 2006), the resulting probability distributions are easy to 

analyze, overfitting can be avoided by using regularization, 

and it is very robust at detailed scales (Phillips et al., 2006).

The Persian gazelle, also known as goitered gazelle, is 

distributed in Iran east of the Zagros Mountains (Groves 

and Grubb, 2011). Until recently they occurred in very 

large numbers in the arid and semiarid steppes of Iran. 

Habitat destruction and fragmentation, illegal hunting, 

and environmental extremes currently confine the 

species’ range to a number of small isolated populations. 

Distribution modeling can be an effective tool to identify 

potential areas for introducing goitered gazelle. Since 

goitered gazelle is one of the main food sources of carnivore 

species, it plays an important role in the survival of other 

species in central Iran such as cheetah (Acinonyx jubatus) 

and leopard (Panthera pardus) as well. 

We studied the application of Maxent distribution 

modeling for analyzing the habitat distribution of goitered 

gazelle by changing the grain and extent size to find the 

best spatial scale for assessing habitat suitability. Our 

main objectives were to: 1) evaluate the use of our spatial 

downscaling method to model the habitat distribution 

of the species at a fine scale, 2) determine the effect 

of environmental variables on the potential habitat 

distribution of goitered gazelle at different spatial scales, 3) 

identify the effect of change in grain and extent size on the 

performance of the model in order to find the best spatial 

scale for predicting potential suitable habitats for the 

species, 4) assess the amount of spatial congruence among 

different models run by various predictors, and 5) predict 

suitable habitats of the whole study area (both protected 

and nonprotected areas).

2. Material and methods

2.1. Study area
Broad-scale habitat suitability modeling was carried out 

in central Iran (c. 320,000 km2) covering most of the 

distribution range of the goitered gazelle. The elevation is 

highly variable, ranging from 117 to 4429 m. Mean annual 

temperature and precipitation is 17.6 °C and 117 mm, 

respectively. Most precipitation occurs during winter. The 

dominant vegetation is composed of semishrubs and shrubs 

with sparse grass. Despite the extreme environmental 

conditions, this part of Iran is rich in biological diversity. 

There are 6 goitered gazelle populations in this area 

confined to the protected areas (Figure 1).

2.2. Species and biogeographical data
Species occurrence consisted of point data collected 

through field surveys and from records kept by the Iranian 

Department of Environment. Finding presence point data 

of goitered gazelle is difficult because of the declining 

populations. We used available presence records (n = 

180) from the entire range of goitered gazelle across the 

study area during 2011–2014 for model development. The 

coordinates of all the occurrence points were recorded 

using a hand-held multichannel Global Positioning System 

(GPS) receiver with positional accuracy of ±5 m.

We applied Maxent modeling using presence-only 

data to predict suitable habitats for the goitered gazelle 

in central Iran at a fine resolution (250 m). We selected 

12 uncorrelated environmental variables in four classes 

(climatic, topographic, vegetation, and anthropogenic) 

presumed to determine the distribution of goitered 

gazelle at the studied scale (Hu and Jiang, 2010; Moreno 

et al., 2011; Ahmadzadeh et al., 2013; Hosseini et al., 2013; 

Mondal et al., 2013). Projections, grid cell size, and spatial 

extent were manipulated to ensure consistency across 

all layers using Arc GIS 9.3. All maps were projected to 

Lambert conformal conic (WGS84 datum) with a grid 

cell size of 250 m. The categorical data were resampled to 

250-km spatial resolution using the majority resampling 

function. Continuous variables such as bioclimatic 

data were downscaled to this target resolution using the 

downscaling method described below. The following 

paragraphs describe each environmental dataset in more 

detail. 
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2.2.1. Preprocessing of climate variables
We obtained information on climatic conditions within 

the study area from the WorldClim database (http://www.

worldclim.org; developed by Hijmans et al., 2005). We 

used a spatial downscaling method to transfer the original 

1-km resolution of WorldClim data to the target resolution 

of 250 m (Flint and Flint, 2012). This model combines a 

spatial gradient and inverse-distance-squared (GIDS) 

weighting to WorldClim data with multiple regression. The 

location and elevation of the new fine-resolution grid cell 

relative to a coarse-resolution grid cell is used to weight 

the parameters based on the following equation: 
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where Z is the estimated climatic variable at the specific 

location defined by easting (X) and northing (Y) coordinates 

and elevation (E); Zi is the climatic variable from the 1-km 

grid cell i; Xi, Yi, and Ei are easting and northing coordinates 

and elevation of the 1-km grid cell i, respectively; N is the 

number of 1-km grid cells in a specified search radius; C
x
, 

C
y
, and C

e
 are regression coefficients for easting, northing, 

and elevation, respectively; and di is the distance from the 

250-m site to 1-km grid cell i (Flint and Flint, 2012). We 

used a 30-km search radius to calculate bioclimatic data at 

the 250-m resolution.  

Inclusion of all 19 bioclimatic variables in SDMs may 

cause ‘overfitting’ of the model and uncertainties due to 

the high degree of correlation among variables (Heikkinen 

et al., 2006; Peterson and Nazakawa, 2008; Ahmadzadeh et 

al., 2013; Boria et al., 2014). Therefore, after downscaling 

climatic variables to the 250-m grid size, we conducted 

a principal component analysis (PCA) based on all 19 

bioclimatic variables for all species’ presence points. 

Principal components (PCs) with eigenvalues greater than 
one were then used in SDM analyses instead of the original 
bioclimatic variables (Ahmadzadeh et al., 2013; Porfirio et 
al., 2014).

2.2.2. Preprocessing of topographic variables
We extracted elevation, roughness, and slope position 
variables from a DEM with 250-m resolution. Following 
Weiss (2001), the study area was classified into six discrete 
slope position classes. A topographic position index (TPI) 
threshold value ± 1 standard deviation (SD) in a 3000-m 
search radius was used to classify the landscape. Standard 
deviation was calculated based on all elevation values in 
the study area using a 90-m DEM. In addition, a 5-degree 
slope was used to distinguish between areas with middle 
and flat slopes (Tagil and Jennes, 2008). Surface roughness 
was calculated at the 250-m cell size using the method 
specified by Hobson (1972). Average surface roughness 
was calculated as the average value of surface roughness in 
each 250-m grid cell. 

2.2.3. Preprocessing of vegetation variables
Vegetation variables used were vegetation type, 
normalized difference vegetation index (NDVI), density of 
vegetation type 1 and 2 (dense and semidense rangeland 
with more than 25% canopy cover), and density of range 
type 3 (scarce rangeland with 5% to 25% canopy cover). 
NDVI values were calculated for 12 months in 2012 
separately using MODIS (Moderate Resolution Imaging 
Spectroradiometer) images obtained at 250-m resolution. 
We used PCA to reduce the correlative NDVI variables into 
a smaller number of uncorrelated linear combinations of 
the original variables (PCs) due to significant correlations 
among 12 NDVI layers. Vegetation type layer was 
extracted from a vegetation map of Iran and reclassified 

into 41 classes based on dominant species. 

Figure 1. The location of the study area on a map of western Asia (right). Inset shows DEM of study area with polygons indicating 

the protected areas where populations of goitered gazelle occur.
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2.2.4. Preprocessing of anthropogenic variables
We calculated farmland and settlement density in the 

study area using a land cover map. Search radius is a key 

factor in calculating density maps. We considered the 

home range size of goitered gazelle as the search radius to 

calculate farmland and settlement density. A few studies 

that have been conducted to estimate the home range 

of goitered gazelle show that sedentary populations of 

this species have a home range ranging from 2 to 8 km2 

(Baharav, 1982; Habibi, 1993; Mendelssohn et al., 1995; 

Martin, 2000; Durmuş, 2010). We considered a circular 

home range with a radius of 1300-m (a home range of 

approximately 5 km2). Therefore, a 1300-m search radius 

was used to calculate farmland and settlement density for 

each grid cell. 

2.3. Modeling procedure
To avoid pseudoreplication we removed duplicate presence 

points using only one location record per 250-m grid cell 

(Trethowan et al., 2010; Fourcade et al., 2014; Giles et al., 

2014). The Maxent distribution is calculated for the set 

of grid cells that contains data on all 12 environmental 

variables in 250-m resolution. First, we used all 12 

uncorrelated variables to build the uncorrelated model in 

250-m resolution. Then we built the pruned model based on 

results of a jackknifing analysis using the 5 most important 

predictors selected on the basis of the uncorrelated model. 

Environmental variables were applied to run the Maxent 

program using 10 replicates and the cross-validate run 

type (Khaki Sahneh et al., 2014; Kailihiwa, 2015; Beatty 

and Provan, 2015). The jackknifing procedure was used 

to assess variable importance and the receiver operating 

characteristic (ROC) curve was used to test model 

performance. An area under the curve (AUC) value 

greater than 0.7 is considered to be potentially significant, 

while scores of 0.5 imply a predictive discrimination that 

is no better than random (Elith et al., 2006). Continuous 

outputs were transformed into presence/absence maps by 

maximum training sensitivity plus specificity thresholds 

(Hu and Jiang, 2010). We calculated spatial overlap 

between uncorrelated and pruned models by Schoener’s D 

index (Schoener, 1968): 

DIVERG = (|a–b|)                                                         

where || is the absolute value of the difference between 

uncorrelated and pruned models, and a and b represent 

the uncorrelated and pruned models (Parolo et al., 2008). 

2.4. Model validation and sensitivity of goitered gazelle 
distribution model to spatial scale
The initial resolution of uncorrelated environmental 

predictors (250 m) was coarsened in eight different scales 

(250 × 250, 500 × 500, 750 × 750, 1000 × 1000, 1500 × 

1500, 2000 × 2000, 2500 × 2500, and 3000 × 3000 m) to 

test the effect of changing grain and extent size on model 

performance. First, we used a fixed grain size at 250-

m resolution and used the surrounding environmental 

information in the seven other scales as input to calculate a 

value for that cell using focal statistics in ArcMap (Song et 

al., 2013). Next, the initial resolution of each environmental 

layer (250 m) was coarsened seven times (250 m to 3000 

m) using a resampling method. In both methods, the 

majority and mean methods were used to calculate a 

value for a given cell for categorical and continuous data, 

respectively. In any one coarse cell, there may have been 

more than one occurrence point, so we reduced these to 

one record per cell. We used the ROC analyses as reliability 

measurements to evaluate the predictive performance of 

the different models (Philips et al., 2006). We calculated 

a Pearson correlation between grain and extent size and 

AUC for each method to assess the effect of change in 

grain and extent size on performance of the model (Song 

et al., 2013). We evaluated model accuracy with the tenfold 

cross-validation method on the training set.

3. Results

3.1. Explanatory predictors
We used 12 uncorrelated environmental predictors to run 

the Maxent model (Table 1). The first and second axes of 

the PCA analysis on bioclimatic variables accounted for 

66% and 25% of the total variance, respectively (Table 2). 

In addition, the results of a PCA analysis on 12 NDVI 

indices showed that the first two axes of the PCA analysis 

accounted for 87% of the total variance. PC1 was mainly 

correlated with the NDVI of autumn and winter months 

and PC2 was correlated with the NDVI index of spring 

months (r > 0.8). We used the two first PCs in the Maxent 

model.

 3.2. Habitat distribution modeling at the 250-m grid size 
Using Maxent, the model calibration test for goitered gazelle 

yielded satisfactory results. The ROC analyses revealed that 

the performance of the uncorrelated model based on 12 

biogeographic predictors was better than random (AUC
un

 

= 0.957). Among the input environmental variables based 

on the jackknifing analysis results, bioPCA1, vegetation 

type, elevation, bioPCA2, and density of vegetation 

type 3 were the five most effective predictors when used 

individually (Figure 2). Additionally, bioPCA1, vegetation 

type, elevation, bioPCA2, and density of vegetation type 

1_2 decreased the regularized training gain the most 

when omitted. Finally, based on the jackknifing analysis, 

percent of contribution, and permutation importance, the 

five environmental variables that most strongly influenced 

the suitability of a habitat for goitered gazelle in 250-

m resolution were bioPCA1, vegetation type, elevation, 

bioPCA2, and density of vegetation 1_2. Therefore, in 

the second model, which was a pruned model, we ran the 

Maxent model using these variables. The performance 

of the pruned model was also significantly better than 
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Table 1. Environmental predictor variables used to model the habitat distribution of goitered gazelle in central Iran.

Code Variable Model

Bio-PCA1 The first PCs of PCA analysis of 19 bioclimatic variables Uncorrelated and pruned

Bio-PCA2 The second PCs of PCA analysis of 19 bioclimatic variables Uncorrelated and pruned

NDVI-PCA1 The first PCs of PCA analysis of 12 NDVI layers Uncorrelated

NDVI-PCA2 The first PCs of PCA analysis of 12 NDVI layers Uncorrelated

Elevation Elevation Uncorrelated and pruned

Roughness Roughness Uncorrelated

SP Slope position Uncorrelated and pruned

RT Vegetation type Uncorrelated and pruned

Rng1_2 Density of vegetation types 1 and 2 Uncorrelated

Rng3 Density of vegetation type 3 Uncorrelated

SD Settlement density Uncorrelated

FD Farmland density Uncorrelated

Table 2. Summary of the principal components analysis of the 19 bioclimatic variables 

extracted from the occurrence points of goitered gazelle in central Iran.

Component PCA1 PCA2

Eigenvalue 11.92 4.44

Percent 66.22 24.66

Cumulative percent 66.22 90.87

Contribution of the variables

BIO1, Annual mean temperature 0.95 0.25

BIO2, Mean diurnal range –0.32 0.82

BIO3, Isothermality –0.19 0.97

BIO4, Temperature seasonality 0.61 –0.77

BIO5, Max temperature of warmest month 0.97 0.00

BIO6, Min temperature of coldest month 0.91 0.34

BIO7, Temperature annual range 0.15 –0.89

BIO8, Mean temperature of wettest quarter 0.85 0.48

BIO9, Mean temperature of driest quarter 0.98 –0.06

BIO10, Mean temperature of warmest quarter 0.97 0.11

BIO11, Mean temperature of coldest quarter 0.87 0.44

BIO12, Annual precipitation –0.98 –0.09

BIO13, Precipitation of wettest month –0.95 0.05

BIO14, Precipitation of driest month 0.00 0.00

BIO15, Precipitation seasonality 0.13 0.86

BIO16, Precipitation of wettest quarter –0.95 0.15

BIO17, Precipitation of driest quarter 0.88 –0.20

BIO18, Precipitation of warmest quarter –0.89 0.11

BIO19, Precipitation of coldest quarter –0.97 0.06
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random (AUC
pu

 = 0.953). The species’ distribution maps 

of the goitered gazelle based on uncorrelated and pruned 

model results showed similar spatial patterns (Figure 3). 

Areas with high habitat suitability when applying the 

maximum training sensitivity plus specificity threshold 

accounted for only 6.7% of the study area. Potential habitats 

with high suitability for goitered gazelle were identified in 

the northwestern and central part of the study area. 

 The results of a spatial congruence test using the 

method of Parolo et al. (2008) showed few divergences 

among the uncorrelated and pruned models (Figure 4). 

A spatial overlap between models using Schoener’s D 

index (Schoener, 1968) also revealed approximately 75% 

convergence. In other words, the uncorrelated and the 

pruned model showed the same suitable and unsuitable 

habitat extent. 

According to the result of the jackknifing test, 

bioclimatic variables were the most important predictors 

in gazelle distribution, so we ran Maxent with just the 19 

bioclimatic variables. Temperature seasonality (Bioclim 

4), mean temperature of coldest quarter (Bioclim 11), 

and precipitation of coldest quarter (Bioclim 19) were 

Figure 2. Jackknifing test of variable importance in the development of the uncorrelated 

model at 250-m resolution. Blue bars indicate the gain achieved when including that 

predictor only. Green gray bars show how much the total gain is diminished without 

the given predictor. Red bar indicate the gain achieved when including all predictors. 

Figure 3. Goitered gazelle distribution maps based on the uncorrelated model (left) and the pruned model (right) for the 250-m 

grid size.
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respectively the first three most important predictors of 

goitered gazelle distribution. Temperature seasonality is 

the amount of temperature variation over a given period, 

with larger seasonality indicating greater variability. The 

temperature seasonality of the whole study area and the 

gazelle presence points were 8286 and 8764, respectively. 

The response curve for ‘temperature seasonality’ showed 

that the highest probability of goitered gazelle presence was 

related to areas having the highest values of temperature 

seasonality. The mean temperature of the coldest quarter 

of the study area and the gazelle presence points was 6.9 

°C and 4.1 °C, respectively. The mean temperature of the 

coldest quarter in the predicted suitable range based on 

the maximum training sensitivity plus specificity threshold 

was 3.7 °C. The precipitation of the coldest quarter of the 

study area and gazelle presence points was 59.8 mm and 

55.5 mm per year, respectively. The precipitation of the 

coldest quarter in the predicted suitable range, based on 

maximum training sensitivity plus specificity threshold, 

was 57.3 mm. The response curves for precipitation of 

the coldest quarter showed that the highest predicted 

suitability occurs in areas of medium precipitation (40–90 

mm per year). 

3.3. Model validation and sensitivity of the goitered 
gazelle distribution model to spatial scale
3.3.1. Grain size
In the species distribution model with a 250-m grain size 

and extent size, the habitat area of the goitered gazelle 

represented 6.7% of the study area. The value of the AUC 

was 0.957. The mean AUC across eight different scales 

ranged from 0.929 to 0.959. AUC decreased slightly as 

the expansion of the grain size increased (Figure 5). 

There was an increase in AUC as the grain size increased 

from 250 m to 750 m and after that the AUC decreased 

to 0.929. Differences in AUC between fine- and coarse-

grain models revealed a significant negative correlation 

between grain size and the AUC (R2 = 0.57). An increase of 

the grain size increased the predicted habitat area (Figure 

5). As the grain size increased, spatial congruence AUC 

fluctuated within a small range. The maximal difference 

was only 0.019 and occurred between models of the 1 × 1 

and 2.5 × 2.5 km probability surface (Figure 6).

3.3.2. Extent size
The expansion of the extent size caused the AUC to 

increase slightly. Likewise, with regard to grain size, there 

Figure 4. Divergence between the uncorrelated and pruned models estimated through 

Parolo divergence index at 250-m resolution. As is shown, there was little divergence (0–

0.2) between models in most of the study area. 
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was an increase in AUC from 250 to 750 m, but beyond 

that the AUC decreased to 0.948. The extent size and the 

AUC showed an insignificant correlation (R2 = 0.18) and 

the result of linear regression confirmed such correlation 

(Figure 5). Predicted habitat suitability decreased as extent 

size increased, but this change was not significant (R2 = 

0.24; Figure 5). The maximum accuracy was obtained 

when the grain size and extent size were adjusted to 750 m.

 

4. Discussion

The present study examined the application of species 

distribution modeling for predicting habitat suitability 

of goitered gazelle at coarse and fine spatial scales using 

appropriate environmental predictors. 

We assessed the habitat distribution of goitered 

gazelle at 250-m resolution using two uncorrelated and 

pruned models. Comparing suitable habitat distribution 

maps, insignificant difference was detected between the 

two models. Pruned models also showed high AUC and 

performed better than random.

Bioclimatic variables and vegetation type were the 

most effective indicators for estimating the suitability of 

habitat for the species. Climate plays an important role in 

determining the species’ distribution and evaluating the 

relationships between environmental factors and biological 

entities (Bailey, 1985; Morelle and Lejeune, 2015). 

Suitability of the central parts of the study area is 

limited for goitered gazelle due to warm and dry climatic 

conditions. High temperature and low precipitation (and 

as a consequence fewer food and water sources) limit 

the species’ distribution. Climatic variables determine 

the species’ distribution at regional (Lomba et al., 2010) 

or larger scales (Gaston, 1994). Temperature seasonality 

and temperature and precipitation of the coldest quarter 

were recognized as the most important climatic variables 

limiting the distribution of goitered gazelle in central Iran. 

These climatic variables are likely strong determinants 

of goitered gazelle survival in winter. Precipitation of 

the coldest quarter may also affect reproductive success. 

Elevation may indirectly affect the distribution of goitered 

gazelle as it has a direct effect on the climatic conditions 

of a given site. If global climate change results in more 

extreme climatic conditions in the future, it may have a 

significant impact on the size and distribution of goitered 

gazelle. 

In addition to bioclimatic variables, though less 

important, the influence of vegetation type and density 

in determining the distribution of goitered gazelle was 

Figure 5. The change in performance index (AUC, left) and habitat suitability area (right) of the output model with increasing extent 

size (open circles) and grain size (filled circles) from 250 to 3000 m. 

Figure 6. Total cross-validation AUC (CV-AUC) and spatial congruence AUC (SC-

AUC) for a range of grain sizes.
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considerable. Vegetation type, vegetation density, and 

plant species diversity have previously been recognized as 

important determinants of herbivores’ habitat suitability 

(Hu and Jiang, 2010). Vegetation provides food for goitered 

gazelles, but may also offer shade at times of day when they 

are resting. 

Gazelles are known to eat a variety of grasses, forbs, 

and shrubs during different seasons (Olson et al., 2010; 

Xu et al., 2012). Overlapping the produced suitability map 

with the vegetation type map revealed that Artemisia spp. 

are dominant in most of the locations determined to be 

suitable for goitered gazelle. Gazelles consume Artemisia 

spp. particularly in autumn and winter (Mowlavi, 1978; 

Jiang et al., 2002; Yoshihara et al., 2008; Olson et al., 2010; 

Xu et al., 2012). Similarly, Artemisia frigida, a dwarf shrub 

with high protein content, is the most common species 

in the habitat of Mongolian gazelle Procapra gutturosa in 

eastern Mongolia (Olson et al., 2010). 

During autumn and winter the nutritional quality and 

quantity of the plant species decreased and were below 

the gazelle’s nutritional need (Bagherirad et al., 2014). The 

percentage of protein in grasses decreased more than in 

shrubs, and thus bushes sustained more nutrition than 

grasses (Beck and Peek, 2005; Bagherirad et al., 2014). To 

obtain the required critical minerals, particularly during 

mating, pregnancy, and lactation, when more food with 

high levels of protein and energy are needed, gazelles 

have to selectively forage on nutritious plants; hence, 

areas dominated with forbs and shrubs such as Artemisia 

attracts gazelles (Olson et al., 2010). In the Khosh-Yeylagh 

Wildlife Refuge, central Iran, these shrubs constituted 86% 

of the diet of the goitered gazelle (Mowlavi, 1978). 

The Artemisia vegetation type has been shown to be 

the most suitable vegetation type for goitered gazelle. 

Hosseini et al. (2013) studied potential suitable habitats 

for Artemisia sieberi and Artemisia aucheri in central Iran 

and noted that habitat suitability for both of these species 

was high in areas with elevation between 2300 and 2500 m. 

The preferred elevation by goitered gazelle, as determined 

on the basis of this study, was 1500 to 2500 m and may 

support the dependence of the species on the Artemisia 

vegetation type. 

Increasing the extent size in the habitat distribution 

model improved the performance of the output model. 

The results of this study showed that assessment of 

environmental information surrounding a grid cell to 

calculate an environmental value for the grid cell improves 

the possibility of obtaining the appropriate information 

concerning environmental variables reflected by that grid 

cell. The results of this study suggest that the maximum 

extent size should be approximately 750 m. If the extent 

size is greater than 750 m, the performance of the habitat 

suitability index decreases and the predicted habitat 

suitability increases dramatically (Figure 5). We increased 

grid size from an initial resolution of 250 × 250 m to 3 

× 3 km. Contrary to expanding extent size, the results of 

increasing grain size showed that model accuracy declined 

if grid size increased beyond 750 m. With the scale 

Figure 7. Location of the protected area containing goitered gazelle in central Iran.
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increased from 250 m to 3 km, AUC decreased slightly 

and the spatial congruence of the AUC fluctuated slightly. 

Based on our results, the best spatial scale for both grain 

and extent size to model habitat distribution of goitered 

gazelle in central Iran is 750 m. 

The present research showed that a habitat distribution 

model that not only reflects habitat information at a given 

grid size but also information about the surrounding 

environment can be highly accurate. Thus, it seems from 

our results that changes in extent size improved the model 

and changes in grain size degraded performance. This 

result was also confirmed by other studies (Seo et al., 2009; 

Guisan et al., 2007; Gottschalk et al., 2011; Song et al., 2013). 

Namely, Seo et al. (2009) examined the effect of increase 

in grid size on performance of species’ distribution and 

found that model accuracy and spatial output agreement 

decrease when the scale increases 64-fold. Guisan et al. 

(2007) suggested that change in grain size does not have 

a substantial effect on species distribution models. Song 

et al. (2013) showed that grain size greater than 1.5 km 

decreases the accuracy of the habitat suitability index and 

increases predicted habitat suitability. 

We overlaid the protected areas in central Iran on our 

predicted habitat suitability map. The results showed that 

a majority of the protected areas except Bidooeyeh (south 

of the study area, Kerman Province) were in the suitable 

range (Figure 7). Habitat distribution models can help to 

suggest new areas in which to introduce populations of 

goitered gazelle on the basis of high suitability of presence. 

These areas have ideal habitat conditions for persistence 

of the species and should facilitate the prioritization of 

new areas. Potential habitats with high suitability were 

distributed in the northwestern and central parts of 

the study area (Figure 3). Figure 7 shows that the areas 

with high habitat suitability for the goitered gazelle are 

continuous patches in the northwestern parts of the study 

area. These areas could be used for in situ conservation and 

reintroduction of the species in the wild. Our results could 

therefore be useful for management of goitered gazelle and 

in the conservation of biological diversity in the region.
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