

Abstract

The U.S. Geological Survey (USGS) is conducting a comprehensive geologic, hydrologic, and geochemical investigation of groundwater resources in the San Diego coastal area. The regional assessment includes five drainage basins, in order to gain a better understanding of the hydrogeology of the areally extensive San Diego Formation. An integral part of the investigation is the installation of 10 multiple-well monitoring sites to collect groundwater samples from discrete intervals and to extract pore-water fluids from selected sections of drill core. The analytical protocol includes major dissolved ions, trace metals, stable isotopes, and strontium isotopes (87Sr/86Sr). Strontium isotopes have proven to be especially useful in detecting mixing among waters of different sources and histories, as well as in characterizing the effects of water-rock interaction.

This paper will present groundwater and pore-water data collected from two, east-west pairs of monitoring-well sites located in the Sweetwater River and the Otay River drainage basins as well, as a monitoring-well site located on a plateau between the two drainage basins. These data indicate that the hydrogeology of the San Diego area can be characterized as alternating layers of marine and non-marine sediment lacking large-scale lateral uniformity. The dissolved strontium concentrations from these groundwater samples and pore-water fluids ranged from as low as 100 μ g/L to more than 18,000 μ g/L, and the ⁸⁷Sr/⁸⁶Sr ratios ranged from about 0.7060 to 0.7090. One potential source of groundwater in the San Diego area is modern seawater, which has an ⁸⁷Sr/⁸⁶Sr ratio of about 0.7092; another is recharge from the topographically higher elevations east of the study area that has ⁸⁷Sr/⁸⁶Sr ratios between 0.7050 and 0.7060. Finally, the similarities in ⁸⁷Sr/⁸⁶Sr ratios between groundwater samples and pore-water fluids provide insight into the relative hydraulic conductivity among these discontinuous aquifers.

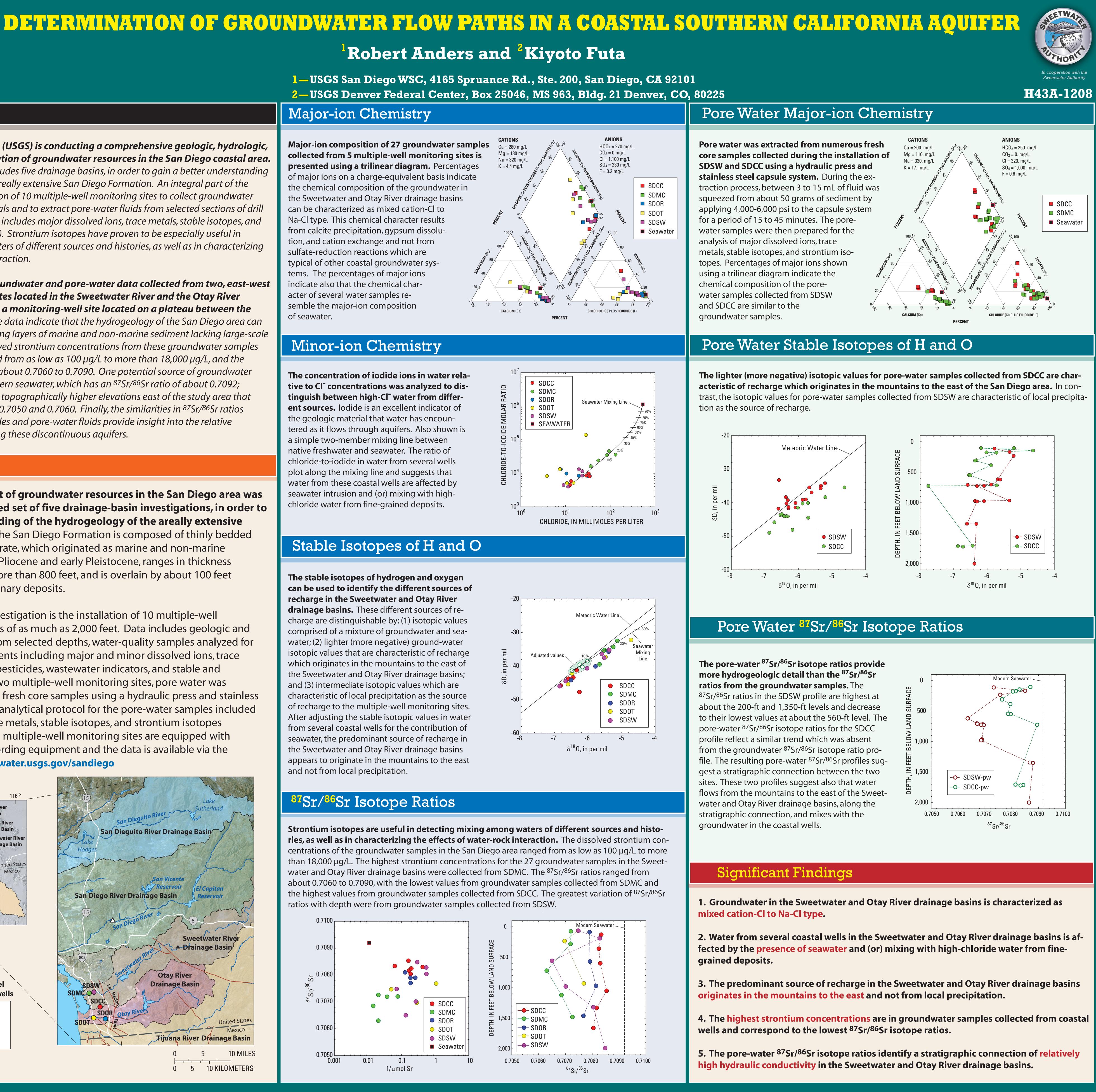
Background

The regional assessment of groundwater resources in the San Diego area was designed as an integrated set of five drainage-basin investigations, in order to gain a better understanding of the hydrogeology of the areally extensive San Diego Formation. The San Diego Formation is composed of thinly bedded sandstone and conglomerate, which originated as marine and non-marine sediment during the late Pliocene and early Pleistocene, ranges in thickness from about 100 feet to more than 800 feet, and is overlain by about 100 feet of unconsolidated Quaternary deposits.

An integral part of the investigation is the installation of 10 multiple-well monitoring sites to depths of as much as 2,000 feet. Data includes geologic and geophysical logs, cores from selected depths, water-quality samples analyzed for a broad range of constituents including major and minor dissolved ions, trace metals, volatile organics, pesticides, wastewater indicators, and stable and radiogenic isotopes. At two multiple-well monitoring sites, pore water was extracted from numerous fresh core samples using a hydraulic press and stainless steel capsule system. The analytical protocol for the pore-water samples included major dissolved ions, trace metals, stable isotopes, and strontium isotopes (87Sr/86Sr). In addition, the multiple-well monitoring sites are equipped with real-time, water-level recording equipment and the data is available via the project website http://ca.water.usgs.gov/sandiego

Major-ion composition of 27 groundwater samples collected from 5 multiple-well monitoring sites is presented using a trilinear diagram. Percentages of major ions on a charge-equivalent basis indicate the chemical composition of the groundwater in the Sweetwater and Otay River drainage basins can be characterized as mixed cation-Cl to Na-Cl type. This chemical character results from calcite precipitation, gypsum dissolution, and cation exchange and not from sulfate-reduction reactions which are

tems. The percentages of major ions indicate also that the chemical character of several water samples resemble the major-ion composition of seawater.


Minor-ion Chemistry

The concentration of iodide ions in water relative to Cl⁻ concentrations was analyzed to distinguish between high-Cl⁻ water from different sources. lodide is an excellent indicator of the geologic material that water has encountered as it flows through aquifers. Also shown is a simple two-member mixing line between native freshwater and seawater. The ratio of chloride-to-iodide in water from several wells plot along the mixing line and suggests that water from these coastal wells are affected by seawater intrusion and (or) mixing with highchloride water from fine-grained deposits.

Stable Isotopes of H and O

The stable isotopes of hydrogen and oxygen can be used to identify the different sources of recharge in the Sweetwater and Otay River drainage basins. These different sources of recharge are distinguishable by: (1) isotopic values comprised of a mixture of groundwater and seawater; (2) lighter (more negative) ground-water isotopic values that are characteristic of recharge which originates in the mountains to the east of the Sweetwater and Otay River drainage basins; and (3) intermediate isotopic values which are characteristic of local precipitation as the source of recharge to the multiple-well monitoring sites. After adjusting the stable isotopic values in water from several coastal wells for the contribution of seawater, the predominant source of recharge in the Sweetwater and Otay River drainage basins appears to originate in the mountains to the east and not from local precipitation.

⁸⁷Sr/⁸⁶Sr Isotope Ratios

