Determination of Groundwater Flow Paths in a Coastal Southern California Aquifer

Robert Anders and Kiyoto Futa

1USGS San Diego WSC, 4165 Spruance Rd., Ste. 200, San Diego, CA, 92101
2USGS Denver Federal Center, Box 25046, MS 963, Bldg. 21, Denver, CO, 80225

The U.S. Geological Survey (USGS) is conducting a comprehensive geologic, hydrologic, and geochemical investigation of groundwater resources in the San Diego coastal area. The regional assessment includes five drainage basins, in order to gain a better understanding of the hydrogeology of the areally extensive San Diego Formation. An integral part of the investigation is the installation of 10 multiple-well monitoring sites to collect groundwater samples from discrete intervals and to extract pore-water fluids from selected sections of drill core. The analytical protocol includes major dissolved ions, trace metals, stable isotopes, and strontium isotopes ($^{87}$Sr/$^{86}$Sr). Strontium isotopes have proven to be especially useful in detecting mixing among waters of different sources and histories, as well as in characterizing the effects of water-rock interaction.

This paper will present groundwater and pore-water data collected from two, east-west pairs of monitoring-well sites located in the Sweetwater River and the Otay River drainage basins as well, as a monitoring-well site located on a plateau between the two drainage basins. These data indicate the hydrogeology of the San Diego area can be characterized as alternating layers of marine and non-marine sediment lacking large-scale lateral uniformity. The dissolved strontium concentrations from these groundwater samples and pore-water fluids ranged from as low as 100 $\mu$g/L to more than 18,000 $\mu$g/L, and the $^{87}$Sr/$^{86}$Sr ratios ranged from about 0.7060 to 0.7090. One potential source of groundwater in the San Diego area is modern seawater, which has a $^{87}$Sr/$^{86}$Sr ratio of about 0.7092; another is recharge from the topographically higher elevations east of the study area that has $^{87}$Sr/$^{86}$Sr ratios between 0.7050 and 0.7060. Finally, the similarities in $^{87}$Sr/$^{86}$Sr ratios between groundwater samples and pore-water fluids provide insight into the relative hydraulic conductivity among these discontinuous aquifers.