Land Subsidence along the Delta-Mendota Canal in the Northern Part of the San Joaquin Valley, California

Michelle Sneed
California Water Science Center
U.S. Geological Survey
March 26, 2014

Summary

► 1,200 mi² area subsided ½-11 inches/year during 2008-10; surveys indicate these rates have continued through 2013
► Adversely affecting water conveyances and other infrastructure
 ► Delta-Mendota Canal, California Aqueduct, Eastside Bypass, San Joaquin River, local canals
► Subsidence is largely permanent
► Subsidence occurred when groundwater levels declined to historically low levels as a result of pumping
► Recent subsidence has shifted about 25 mi northeast from historical (1926-70) maximum
► Long-term monitoring of water levels and subsidence is needed to detect and track groundwater conditions for decision support
Subsidence Damages Natural Resources and Infrastructure

► Flood Protection and Infrastructure
 - Damage to water conveyance systems and other infrastructure
 - Reduced conveyance capacity and freeboard, panel damage; water surface and liner misalignment; erosion/deposition in unlined channels
 - Roads, rails, bridges, pipelines, wells, etc.

► Natural resources
 - Reduces aquifer-system storage capacity
 - Impacts to wetland, riparian, and aquatic ecosystems
 - Restricted land uses
Impact on Infrastructure

Canal photos courtesy of Chris White, Central California Irrigation District
Measuring Subsidence

Bench Mark

Spirit Leveling

GPS

InSAR

ERS-1, ERS-2

Extensometer*

*measures part of land subsidence
Extensive withdrawal of groundwater caused widespread subsidence (1920s-1970)

Surface-water deliveries caused widespread recovery and slowing or cessation of subsidence, except when deliveries were curtailed and groundwater pumping increased to meet demand.

Galloway and others, 1999; USGS Circular 1182
Recent Subsidence

- Renewed subsidence concern during 2007-09 drought, and now, the current drought
 - Reduced surface water importation
 - More reliance on the groundwater resources
 - As it turns out...this is not just a problem during droughts for some areas with little or no surface-water access

P304 data from UNAVCO; 2004-10 water-level data from Luhdorff and Scalmanini Consulting Engineers
Federal, State, and Local Water Infrastructure in the Impacted Area

Modified from Faunt, 2009
Detected Edges of Subsiding Area

InSAR Subsidence Measurements

Max of about 3 inches (2007-10)

Max of about 6 inches (2003-08)
Max of at least 21 inches (2008-10)
Highest Impact: Adjacent to San Joaquin River and Eastside Bypass
Subsidence along the DMC

Explaination:
- 1: Check station and number

Vertical displacement in millimeters:
- 12/24/2007-7/26/2010
- 7/3/2003-3/24/2005

2007-10
2003-08
Water levels in the Shallow and Deep Systems Declined 2007-10

Clayey lenses
Unconfined aquifer system
Confined aquifer system
Corcoran Clay (confining layer)

River

Fresh-water recharge
Sierra Nevada

Bedrock

Old saline water

Year
Groundwater Levels Continue to Decline

13S-15E-31J6 (near Mendota)
GPS Subsidence Measurements

- Rate increases during droughts
- Subsidence only during droughts
Historical Subsidence
Current Activity: Extensometers

- Oro Loma (16H2)
- Panoche (11D6)
- DWR Yard (33A1)
- Rasta (6D1)

Hourly measurements of aquifer-system compaction and groundwater levels
Subsidence near Stockton
What Can Be Done About It?

► Focus on maintaining groundwater levels above historical low levels
 - Reduction of groundwater withdrawal
 - Decreasing groundwater demand
 - Limiting/redistributing groundwater use
 - Increasing supplemental water supply
 - Enhanced groundwater recharge
 - Artificial recharge: direct well injection or surface infiltration
 - Natural recharge: source protection

► Long-term monitoring of water levels and subsidence is needed to detect and track groundwater conditions for decision support
Thanks!