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ABSTRACT

This paper outlines the production of 270 meter grid-scale maps for 14 climate and derivative
hydrologic variables for a region that encompasses the State of California and all the streams
that flow into it. The paper describes the Basin Characterization Model (BCM), a map-based,
mechanistic model used to process the hydrological variables. Three historic and three future
time periods of 30 years (1911-1940, 1941-1970, 1971-2000, 2010-2039, 2040-2069, and 2070-
2099) were developed that summarize 180 years of monthly historic and future climate values.
These comprise a standardized set of fine-scale climate data that were shared with 14 research
groups, including the U.S. National Park Service and several University of California groups as
part of this project. The paper presents three analyses done with the outputs from the Basin
Characterization Model: trends in hydrologic variables over baseline, the most recent 30-year
period; a calibration and validation effort that uses measured discharge values from 139
streamgages and compares those to Basin Characterization Model-derived projections of
discharge for the same basins; and an assessment of the trends of specific hydrological variables
that links historical trend to projected future change under four future climate projections.
Overall, increases in potential evapotranspiration dominate other influences in future
hydrologic cycles. Increased potential evapotranspiration drives decreasing runoff even under
forecasts with increased precipitation, and drives increased climatic water deficit, which may
lead to conversion of dominant vegetation types across large parts of the study region, as well
as have implications for rain-fed agriculture. The potential evapotranspiration is driven by air
temperatures, and the Basin Characterization Model permits it to be integrated with a water
balance model that can be derived for landscapes and summarized by watershed. These results
show the utility of using a process-based model with modules representing different
hydrological pathways that can be interlinked.
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water balance, climate change

Please use the following citation for this paper:

Thorne, James, Ryan Boynton, Lorraine Flint, Alan Flint, and Thuy-N’goc Le (University of
California, Davis and U.S. Geological Survey). 2012. Development and Application of
Downscaled Hydroclimatic Predictor Variables for Use in Climate Vulnerability and Assessment
Studies. California Energy Commission. Publication number: CEC-500-2012-010.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS.......c.cooiiiiiiiiiciiii st i
ABSTRACT ... s ii
TABLE OF CONTENTS ..ottt iii
LIST OF TABLES ...ttt iv
LIST OF FIGURES........cootiiiiiiiicicictctcttc sttt iv
Section 1: INtrodUCHON ......cooiviiiiiiiiic s 1
1.1  PIER Vulnerability and Adaptation Study ........ccccccoiviviiiniiiiininiiicccccccces 1
1.2 Hydroclimatic Variables for Future Climate Studies..........cccooevevnininiiiiniiicccce 1
1.3 Development of Variables at Fine Spatial Scales...........ccccoovovviiivininiiininiiiiceeeccccine 2
14  Hydrologic Modeling Background...........cccocoovvieininininiiiniiiciciccccccccc s 2
1.5  Regional Water-Balance Modeling to Evaluate Hydrologic Response to Climate in
CalIfOTNIA. ..ttt ettt 4
1.6 Other Studies Using the Data...........cccooiiiiiiiiiiiiiiiiniiiiiicceeeenen 4
Section 2: Data and Methods..........ccciiiiiiiiii s 6
2.1 SHUAY AT ..o 6
2.2 Future Climate SCENATIOS ........coeuiiiiiiiiiiiiciice s 8
2.3 Data Development ........cccooeieieiiiciiiciccccc 9
231 Downscaling Historic and Future Datasets...........cccooviviiiniiininnniiceecece 10
2.3.2 Description of the Basin Characterization Model (BCM)........cccccevviviiiiiininiiininnnnes 10
233 Model Performance: Calibration and Validation ............cccccoeueiiiiiiiiniiine, 13
234 Post Processing: 30-year and 10-year Summaries and Statistics ...........ccceceeeennnee 21
SeCtOr 3: RESUILS.....oviiiiic 22
3.1  BCM Climate and Hydrology Results............cccccceviviniiiiiiiiniiiininiiiiiicccccccnes 22
3.1.1 Patterns in Baseline 30-year Climate and Hydrology ...........cccocoeueeiciciiiinnne. 22
3.1.2 Historic to Future Climate and Hydrology ..........cccccoeeiviviiinniiiiniiiiiiiccces 26
Section 4: DISCUSSION ......oviuiiiiiiiiiiictciec st 56
41  BCM Performarnce ..ot 58



42  Model Utility and Data Limitations ........ccccceeeiviriiininiiiiiciicceecceeecceeeeaes 59

Section 5: Summary and ConclUSIONS .........coiiiiiiii e 62
51  Development of Hydroclimatic Variables for Climate Assessments..........c.ccccoeevvnrnnneee. 62
5.2 Model Refinements and Future Directions .............cccccccvvviiiiininiiininiinniiiicccnn 63

REfETEINCES .....eiiiiiiiiii s 64

GLOSSATY ...t 71

Appendix A: Input Files and Output Files for the Basin Characterization Model......................... 72

Appendix B: Description of Input and Output Variables for the Basin Characterization Model 73

Appendix C: Streamgages Used for Study Basins in California for the Basin Characterization
Model, Including Calibration Parameters, and Goodness-of-fit Statistics............cccecevviviriicnnnnnne 74

Appendix D:  Available Datasets for the 14 Climate and Hydrologic Variables......................... 82

Appendix E:  Summary of Climate Conditions through Time Using the 5128 HUC 12
Watersheds as Units of ANalySis .......coceiiiiiiiiiiii s 83

Appendix F: Identify Vulnerable Species and Adaptation Strategies in the Southern Sierra
of California Using Historical RESUIVEYS .......c.ccovoiiiiiiiiiiiiiceeecctccc e 84

LIST OF TABLES

Table 1: Climate and Hydrologic Variables for Modified Jepson Ecoregions in California. Mean
value and change for 1971-2000. ..........ccceeueieiririiecccc s 24

Table 2: Climate and Hydrologic Variables for Modified Jepson Ecoregions in California. Mean
and standard deviation for 30-year time periods from 1911-2000 and 2070-2099.............cccc........ 28

LIST OF FIGURES

Figure 1: Study Area of the “Hydrologic” California with Study Basins, Modified Jepson
Ecoregions, and Watersheds with Streamgages Used for Calibration or Validation....................... 7

Figure 2: Schematic Describing Relation of Components of the Basin Characterization Model.
Arrows indicate the sequence of calculations. ............cceiiiiiiiiii 12

Figure 3: Map of Geology for Study Area with Study Basins..........cccccoovvninniniiiiniiicccccne, 14

iv



Figure 4: Plots on the Left Show All 5128 Watersheds in California (black) and Study Basins
(red) Illustrating the Range of Representation by Study Basins for Elevation, Bedrock
Permeability, and Aridity. Plots on the right show the distribution of Calibration and Validation
8agES fOI the SAMIE. ......cuiviiiiiiiii s 17

Figure 5: Calibration Time Series Comparing Measured and Estimated Basin Discharge in
Millions of Cubic Meters, for Five Calibration Basins: (a) Dry Creek near Cloverdale, California,
(b) Napa River at Calistoga, California, (c) Big Creek above Pine Flat Reservoir near Trimmer,
California, (d) Aptos Creek at Aptos, California, and (e) Sprague River near Beatty, Oregon. ...18

Figure 6: Map of Study Basins Illustrating the Spatial Distribution of the Calibration Statistics
for the (top) Nash-Sutcliffe Efficiency Statistic, (left) Monthly r?, and (right) Yearly r>................ 20

Figure 7: Map of Change in April 1 Snowpack, Calculated as Snow Water Equivalent, for 1971-

Figure 8: Maps of Change in Runoff and Recharge over the 1971-2000 Baseline Period, Binned
as %2 Standard Deviation from the Mean, and Including Study Basins. The locations where
increases have occurred in runoff or recharge are indicated by cool colors, greens and blues, and
decreases by warm colors, yellows, and Oranges. ............cccoeeevviruiininiiiiiiniiiinecieeeseeeens 25

Figure 9: Maps of (a) Average Annual Climatic Water Deficit and (B) Change in Climatic Water
Deficit over the 1971-2000 Period, Binned as V2 Standard Deviation from the Mean.................... 26

Figure 10: The Difference in Annual Precipitation for HUC 12 Watersheds between 1911-1940
and 1971-2000 (a), Normalized to the Standard Deviation over the 1971-2000 Period (b), and
Statistically Significant Areas of Change, as Measured Using a T Test at a = .05

Significance Level (C) ....ccoviiiiiiiiiiiiicic s 31

Figure 11: Difference in Annual Precipitation (PPT) for HUC 12 Watersheds between Future
(2071-2100) and Baseline (1971-2000) for the GFDL and PCM A2 and B1 Scenarios.................... 32

Figure 12: The Difference in Precipitation for HUC 12 Watersheds between Future (2071-2100)
and Baseline (1971-2000), Normalized to the Standard Deviation over the Period 1971-2000....33

Figure 13: Statistically Significant Areas of Precipitation change between Future (2071-2100) and
Baseline (1971-2000), as Measured Using a T Test at o = .05 Significance Level.............cccccc...... 34

Figure 14: The Difference in Annual Potential Evapotranspiration (PET) for HUC 12 Watersheds
between 1911-1940 and 1971-2000 (a), Normalized to the Standard Deviation over the 1971-
2000 Period (b), and Statistically Significant Areas of Change, as Mea ............cccccceeiciiirnnnen. 36

Figure 15: The Difference in Annual Potential Evapotranspiration (PET) for HUC 12 Watersheds
between Future (2071-2100) and Baseline (1971-2000) for GFDL and PCM A2 and B1 Scenarios



Figure 16: The Difference in Potential Evapotranspiration for HUC 12 Watersheds between
Future (2071-2100) and Baseline (1971-2000) Normalized to the Standard Deviation over the
1971-2000 Period for GFDL and PCM A2 and B1 Scenarios ...........ccccceveuiinirieciniinccnininiecinennes 38

Figure 17: Statistically Significant Areas of Potential Evapotranspiration change between Future
(2071-2100) and Baseline (1971-2000), as Measured Using a T Test at a = .05 Significance Level

Figure 18: The Difference in Annual Runoff (RUN) for HUC 12 Watersheds between 1911-1940
and 1971-2000 (a), Normalized to the Standard Deviation over the 1971-2000 Period (b), and
Statistically Significant Areas of Change, as Measured Using a T Test at a =.05

Significance Level (C) ....cooviiiiiiiiicc s 41

Figure 19: Difference in Annual Runoff (RUN) for HUC 12 Watersheds between Future (2071-
2100) and Baseline (1971-2000) for GFDL and PCM A2 and B1 Scenarios.......c..cccceceeververueeeeruenne. 42

Figure 20: The Difference in Runoff for HUC 12 Watersheds between Future (2071-2100) and
Baseline (1971-2000), Normalized to the Standard Deviation over the 1971-2000 Period for the
GFDL and PCM A2 and B1 SCENATIOS .....ccuecueieuieiriieiinienieictetetee sttt sae et 43

Figure 21: Statistically Significant Areas of Runoff change between Future (2071-2100) and
Baseline (1971-2000), as Measured Using a T Test at o = .05 Significance Level...........cccccec....... 44

Figure 22: The Difference in Annual Recharge (RCH) for HUC 12 Watersheds between 1911-
1940 and 1971-2000 (a), Normalized to the Standard Deviation over the 1971-2000 Period (b),
and Statistically Significant Areas of Change, as Measured Using a T Test at a = .05

SigNificance LeVEl (C) ..c.cioiiiiiiiiiiiiiiicccic s 46

Figure 23: Difference in Annual Recharge (RCH) for HUC 12 Watersheds between the Future
(2071-2100) and Baseline (1971-2000) for the GFDL and PCM A2 and B1 Scenarios.................... 47

Figure 24: The Difference in Annual Runoff for HUC 12 Watersheds between Future (2071-
2100) and Baseline (1971-2000), Normalized to the Standard Deviation for the 1971-2000 Period
for GFDL and PCM A2 and B1 SCENATIOS ........cccoeirueiruiniriiiiiieiietnietetetsietees e 48

Figure 25: Statistically Significant Areas of Recharge change between Future (2071-2100) and
Baseline (1971-2000), as Measured Using a T Test at o = .05 Significance Level.............cccc.c....... 49

Figure 26: The Difference in Annual Climatic Water Deficit (CWD) for HUC 12 Watersheds
between 1911-1940 and 1971-2000 (a), Normalized to the Standard Deviation over the 1971—
2000 Period (b), and Statistically Significant Areas of Change, as Measured Using a T Test at a
=.05 Significance Level (C) .....cocoiiiiiiiii e 51

Figure 27: Difference in Climatic Water Deficit (CWD) for HUC 12 Watersheds between Future
(2071-2100) and Baseline (1971-2000) for GFDL and PCM A2 and B1 Scenarios ..........ccccceeueuneene. 52

Vi



Figure 28: The Difference in Climatic Water Deficit for HUC 12 Watersheds between Future
(2071-2100) and Baseline (1971-2000), Normalized to the Standard Deviation over the 1971-2000
Period for GFDL and PCM A2 and B1 SCenarios ..........cccccoeueiriniiiiininiiniiniiccincecseecineneenes 53

Figure 29: Statistically Significant Areas of Climatic Water Deficit change between Future (2071-
2100) and Baseline (1971-2000), as Measured Using a T Test at a = .05 Significance Level.......... 54

Figure 30: Current (1971-2000) Average Climatic Water Deficit, and Difference between One
Scenario (GFDL A2) and BaSeliNe.........coevevieiiiiirinieniesieieietetee sttt ettt sttt 55

Unless otherwise noted, all tables and figures are provided by the authors.

vii



Section 1: Introduction
1.1 PIER Vulnerability and Adaptation Study

The California Energy Commission (Energy Commission) Public Interest Energy Research
(PIER) 2010 Climate Change Vulnerability and Adaptation (V&A) study includes the
development of downscaled climate and hydrologic variables for the State of California and the
watersheds that flow into it. These fine-scaled climate data can be used in a variety of
applications and analyses that may permit better research, modeling, and interpretation for
resource management in the state. These variables were also developed to provide a standard
set of downscaled climate of historic and baseline conditions, and future emissions scenarios for
use by researchers in multiple sectors involved in the overall PIER V&A study. The idea was
that even when future projections are uncertain, if the same projections are used by groups
working in multiple sectors, then the results from each sector study may be more cross-
comparable. We arrived at the grid-scale and scenarios presented here through a series of steps
that started with the identification of appropriate scenarios for California, based on Cayan et al.
(2008), and the use of fine-scale downscaling for application to a regional hydrological model
that can be evaluated on the basis of measured streamgage data.

This paper documents the methodology used to develop 14 climatic and hydrologic variables at
270 meters (m) for a 90-year retrospective and a 90-year forward projection, under two
emissions scenarios and using two global climate models (GCMs), as well as potential
applications, accuracies, and uncertainties. It also describes the data preparation and
distribution, and acknowledges the studies being conducted in parallel that have used the data
for the V&A study and other ongoing studies. We provide detail on trends in the hydrologic
variables, but not temperature, as this paper is primarily focused on hydrology.

1.2 Hydroclimatic Variables for Future Climate Studies

Much of climate change impact assessment and adaptation planning centers on water
availability, for both human populations and ecological systems (e.g., Trnka et al. 2011;
Parmesan 2006). Projections of future climates from GCMs include the amount and timing of
precipitation, as well as increases in air temperature, and are widely used in climate impact
assessments (Girvetz et al. 2009). One of the needs in these assessments is a better
understanding of what happens to precipitation in terrestrial ecosystems. The three main
pathways—returning to the air via evaporation and plant transpiration; infiltration into soils
and recharge to aquifers; and runoff —represent the water balance. Quantifying the relationship
between these pathways can permit much more detailed predictions of the impacts of changing
water availability to ecosystems and their inhabitants. Although climate change studies are
fraught with uncertainty on the basis of emissions scenarios and GCMs used, the application of
climate projections to mechanistic, process-based, hydrologic modeling should not be cause to
amplify the uncertainty in the GCM projections. In fact, the incorporation of deterministic
processes and landscape characteristics can potentially be employed to reduce uncertainty in
the projected hydrologic outcome. Validation of spatially explicit hydrologic models that



quantify the water balance by comparing measured streamflow with model output is a
promising approach to providing defensible mechanistic hydrologic relationships between
climate and landscape in baseline time, that can then be applied to future climate projections for
potentially more detailed forecasts. These will have increased utility over existing models for
studies investigating climate impacts to species and ecosystems. Such a spatially vetted
mechanistic model could then provide more robust projections of runoff, and thereby the other
components of the water balance under future climates. Such capacity for these more detailed
hydrologic predictions is critical for ecological studies and planning in the face of climate
change.

1.3 Development of Variables at Fine Spatial Scales

The search for operational scales of analysis to inform natural resources management drives a
need for finer-scale climate models. Global climate model outputs, typically range from 1.5-4.5
degrees (e.g. 2.5 degrees is approximately 250km x 250km), is too coarse for watershed-specific
assessments on all but the largest watersheds (Fowler et al. 2007; Girvetz et al. 2009), requiring
the need to convert this output to scales that appropriately reflect the environmental processes
under consideration. Downscaling can bring climate projections to a spatial dimension for grid
cells that can be validated using watershed-based methods, applied to local landscapes, or
analyzed across large regions. Depending on the process of concern, this downscaling may
range from spatial extents of kilometers to meters. Downscaling was, therefore, the first step we
took to develop projections of water-balance components for California watersheds that are
robust for use under climate change scenarios. As projections maintain their own set of
uncertainties on the basis of the assumption chosen for global climate modeling and greenhouse
gas emissions scenarios, it is advisable to incur the least additional uncertainty attributable to
the downscaling scheme itself.

1.4 Hydrologic Modeling Background

Many approaches to hydrologic modeling have been developed. The U.S. Geological Survey
(USGS) Precipitation-Runoff Modeling System (PRMS) is being used to simulate flows under
future climate conditions at the watershed scale (Leavesley et al. 1992; Hay et al. 2011). This
approach requires daily temperature and precipitation values that are applied to individual
watersheds and used in a deterministic, distributed-parameter setting (Risley et al. 2011). The
Variable Infiltration Capacity model (VIC) is a spatially explicit physical hydrology model,
generally run regionally at coarse spatial scales, that balances energy and water budgets (Liang
et al. 1994) and also runs using daily data (Wood et al. 2002). This model has also been applied
to monthly climate in a model comparison study by Maurer et al. (2010), who found that model
selection was less important for capturing high flow timing but that for the low flows, the
models they tested varied, implying a need to vet model performance, particularly for
aridifying regions. These rainfall-runoff models are specifically calibrated to streamgage data.

Other hydrologic modeling approaches have used streamgage data to validate the model
projections as well. Alkama et al. (2011) developed the Interactions between Soil, Biosphere, and
Atmosphere-Total Runoff Integrating Pathways (ISBA-TRIP) and looked at multi-decadal



variability in continental runoff from 1960-1994 using 154 large rivers with varying lengths of
streamgage data for validation. Chiew et al. (2010) found that five different downscaling
techniques all reproduced observed rainfall, and the runoff models used were capable of
reproducing observed streamflows for eight basins in Australia. The range of applications and
modeling platforms using streamflow for calibration indicates the utility of using the integrated
measurement of streamflow in calibration exercises.

All of these rainfall-runoff models rely on soil storage in some capacity and do not incorporate
bedrock properties; thus, they neglect the influence of bedrock permeability in estimates of
recharge. There have been many experimental evaluations of hillslope processes and a few that
have investigated the influence of bedrock permeability on hydrologic response to climate
(Hutchinson and Moore 2000; Tromp-van Meerveld et al. 2007). Fewer still that have
numerically modeled watersheds with the incorporation of bedrock properties (Flint and Flint
2006; Jones et al. 2008; Hopp and McDonnell 2009). Generally, these models are two- or three-
dimensional, finite-element models that explicitly incorporate bedrock, but are computationally
expensive and cover small areas. Historically, recharge estimates have relied on monthly water-
balance models that incorporate simulations of evapotranspiration (Alley 1984), inverse
modeling (Sanford 2001), or lysimetry and tracer tests (Gee and Hillel 1988). Water-balance
modeling to assess both recharge and runoff has been done at the site scale (Flint et al. 2002;
Ragab 1996) and integrated with various measurements addressing different spatial scales (Flint
et al. 2002). Watershed-scale or regional-scale modeling to estimate recharge and runoff has
been done using water-balance modeling by Hevesi et al. (2003), Flint et al. (2004, 2011, 2012, in
review), and Flint and Flint (2007).

Water-balance models have been used to assess the impacts of climate change on hydrology,
and in California the following water-balance models have been previously used: VIC and
CALSIM (Vicuia et al. 2007; Maurer et al. 2010), the Precipitation-Runoff Modeling System
(PRMS) (Dettinger et al. 2004; Koczot et al. 2011), Water Evaluation And Planning (WEAP)
(Purkey et al. 2008, Sacramento Valley), and the Watershed Environmental Hydrology (WEHY)
model (Chen et al. 2004), either at the watershed scale, or regionally. While many studies have
evaluated impacts of climate change on ecological processes and the response of species to these
changes (e.g., Lenihan et al. 2003; Lawler et al. 2009; Heller and Zavaleta 2009), these
evaluations are predominantly based on climate variables, without the integrating effects of
hydrologic response. Indeed, most species-distribution models rely solely on climatic variables
and topography (Franklin 2010, ch. 5). Analyses of climate change impacts on ecosystems using
climatic water deficit, with estimates of actual evapotranspiration, are beginning to emerge in
the literature (e.g., Lutz et al. 2010; Breshears et al. 2009; van Mantgem and Stephenson 2007;
Crimmins et al. 2011). However, the hydrologic results presented in this paper are provided at a
fine spatial scale not yet seen applied in the literature that has the potential to further enhance
the science and interpretation of climate change impacts on ecological systems.



1.5 Regional Water-Balance Modeling to Evaluate Hydrologic
Response to Climate in California

The Basin Characterization Model (BCM) is a regional water balance model (Micheli et al., in
review; Flint and Flint 2007) that has been applied to numerous watersheds in California at a
fine scale of 270 m grid cells to assess impacts of climate change on both water availability and
ecosystems. Using downscaled precipitation and air temperatures surfaces from 1971-2000,
projections of runoff and recharge were produced for model calibration and assessment of
model performance.

This paper reports historic and future trends from the climatic input variables and from
variables generated by the BCM: snowpack, potential evapotranspiration, actual
evapotranspiration, and climatic water deficit (Appendices A and B). The future condition
analyses are for four climate scenarios representing a range of projected outcomes and model
sensitivity to greenhouse gas forcing, and an analysis of the resulting hydrologic impacts.

To develop confidence in the application of historic and future climate projections to hydrologic
modeling, this paper evaluates the reliability of hydrologic model performance by comparing
basin discharge, a product of the runoff and recharge values modeled by the BCM with basin
discharge values measured at streamgages. We assembled historical streamgage data from 138
mostly unimpaired basins (Figure 1; Appendix C) and used the monthly and yearly summaries
from streamgages to test how well the BCM model outputs perform on watersheds with
varying bedrock permeability, soil properties, impermeable surfaces, and degrees of aridity.
The results of this model testing permit better interpretation of where hydrologic simulations
perform better or worse due to influences of landscape variables. Tests were conducted by
calculating discharge from BCM model outputs and comparing that to streamgage data.

1.6 Other Studies Using the Data

A number of other efforts under the PIER 2010 Climate Change Vulnerability and Adaptation
effort are using the outputs from this data modeling effort. These include research groups
working on:

¢ modeling the expected optimum movement corridors for biodiversity as it shifts suitable
range (Hannah et al. 2012);

e modeling of fire return interval under future climatic and hydrological conditions
(Krauchuk and Moritz 2012);

e astudy that integrates historic vertebrate surveys, vegetation data, and historical climate
data (Santos et al. 2012);

e an assessment of agricultural vulnerability, that includes among many factors the
projections developed here (Jackson et al. 2012); and

¢ in the projections of future energy consumption by integrating the temperature values
with projected future urban footprints (Thorne et al. 2012).



The idea behind using the same base climate and ecohydrological data for these studies is that,

even if the projections turn out not to be correct, the results of the studies are cross-comparable.

In addition, there are a number of recent and ongoing studies in California that have relied on

these datasets. Among these are a number of projects in the USGS California Water Science

Center, including the following:

A collaboration with the California Department of Water Resources that focuses on
snowmelt in the southern Sierra Nevada and the contribution of soils to uncertainties in
future streamflows

A U.S. Forest Service study on mortality in high-elevation white bark pine (Pinus
albicaulis) (Millar et al., in press)

A Sonoma County Water Agency study on climate change impacts to the Russian River,
future streamflows, and groundwater availability

A USGS study on climate change impacts on streamflow and temperature in the
Klamath River basin

A study on climate change impacts on water resources in Santa Cruz County (Santa
Cruz Health Department)

USGS studies requiring upper recharge boundary conditions for groundwater models in
Antelope Valley, Fort Irwin, San Gorgonio Pass, Santa Rosa Plain, Borrego Valley,
Central Valley

Ecological applications for the U.S. Fish and Wildlife’s California Landscape
Conservation Cooperative projects on wolverines in the Sierra Nevada, Central Valley
waterbirds, and Central Valley rangelands

Other groups using the data include researchers at the University of California (UC)

Berkeley, UC Santa Barbara, UC Riverside, Arizona State University, Sonoma Ecology
Center, Pepperwood Foundation, and Creekside Center for Earth Observation.



Section 2: Data and Methods
2.1 Study Area

Hydrologic analyses rely on the topographic boundary of watersheds and drainages, and
therefore we applied the BCM to hydrologic California, defined as all basins that drain within
or into the State of California. All future references to California in this report infer this larger
boundary. We report results for 5,128 watersheds (USGS 12-digit hydrologic units; sub-basins
defined on the basis of the USGS National Hydrography

Dataset; http://nhd.usgs.gov/index.html), and by ecoregion (Figure 1; modified from Hickman
(1993) to include all basins draining into California).

Fluctuations in runoff or recharge across multiple watersheds can be monotypic or varied in
response, indicating the need to calibrate hydrologic models to the watershed scale. In addition,
relatively few watersheds are gaged, requiring modeling of hydrologic dynamics for most
landscapes. For example, for our study area, approximately 1,700 streamgages have been in
operation within the 1971-2000 period, their periods of record ranging from 1 to 109 years; but
only 1,400 record five or more years. These streamgages represent less than a third of the 5,128
subwatersheds in California; many of these gages are on the same streams (replicates), and
California is presumably one of the better-instrumented regions of the world.


http://nhd.usgs.gov/index.html�

Figure 1: Study Area of the “Hydrologic” California with Study Basins, Modified Jepson
Ecoregions, and Watersheds with Streamgages Used for Calibration or Validation

Streamgages record a variety of discharge dynamics, from flashy with high runoff peaks as a
result of low permeability bedrock (such as granites in the Sierra Nevada or impervious urban
surfaces), to high baseflows with very permeable bedrock composition (e.g., volcanic rock; Flint
and Flint 2007; Flint et al. 2011; Tromp-van Meerveld et al. 2007). The degree of climate aridity
and soil type also affects hydrologic response to climate, with the deep unsaturated zones (in
arid regions or the deep soils of California’s Central Valley) storing water when available from
wet climate cycles for use as groundwater during dry periods (Flint and Flint 2007). These
factors are implicitly addressed when projections of hydrologic change due to changes in
climate are considered; however, they are potentially confounding with projections of basin
discharge.



2.2 Future Climate Scenarios

Global climate models are generally available for the continental United States ata 2.5 x 2.5
degree spatial resolution (IPCC 2001, 2007). A set of these projections have been downscaled to
1/8 x 1/8 degree (approximately 12 x 12 kilometers [km]) spatial resolution for the State of
California and its environs by researchers at USGS and Scripps Institute of Oceanography using
the constructed analogs method of Hidalgo and others (2008). These provide a basis for our
turther downscaling for model application. On the basis of analyses done by Cayan et al. (2008;
2009), several criteria were followed in the selection of models to downscale for the PIER V&A
study. Models selected were required to produce a realistic simulation of aspects of California’s
recent historical climate, particularly the distribution of monthly temperatures and the strong
seasonal cycle of precipitation. They were required to contain realistic representation of some
regional features, such as the spatial structure of precipitation, and similar degree of variability.
In addition, models selected were to have differing levels of sensitivity to greenhouse gas
forcing.

As a result, for our analysis, two GCMs were selected: the Parallel Climate Model (PCM)
developed by National Center for Atmospheric Research (NCAR) and the U.S. Department of
Energy (U.S. DOE) (see Washington and others 2000; Meehl and others 2003) and National
Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory
CM2.1 model (GFDL) (Stouffer and others 2006; Delworth and others 2006). The choice of
greenhouse gas emissions scenarios included A2 (medium-high emissions) and B1 (low or
“mitigated” emissions), and was guided by considerations presented by the Intergovernmental
Panel on Climate Change (IPCC) (Nakic’enovic’ and others 2000). Thus we developed a range of
hydrology estimates based on four specific scenarios; two models each representing two
emissions scenarios. We refer to these scenarios as “GFDL A2,” “GFDL B1,” “PCM A2,” and
“PCM B1.” These four projections span the range of future climates in California and represent
“warmer (B1) and wetter (PCM),” and “much warmer (A2) and drier (GFDL).”

The above approach could be described as a precision-based approach, which is one that,
instead of examining all possible (or modeled) futures, focuses on projections thought to be
most relevant for a particular area. An alternative that is frequently used in climate studies is
the ensemble approach, wherein a stack of GCM projections or emission scenarios are
considered in concert to determine consensus in the direction or magnitude of change (e.g.,
Pierce et al. 2009). Consensus studies were conducted as part of the PIER V &A effort by other
groups, including Krauchuk and Moritz (2012). This study uses the precision approach and
illustrates a range of possible outcomes for projections previously described by Cayan et al.
(2008), and listed above.

To put these scenarios in a larger context, the Krawchuk and Moritz paper (2012) compares
these four scenarios to an ensemble of 16 models of global climate model output from the World
Climate Research Programme's (WCRP) Coupled Model Intercomparison Project phase 3
(CMIP3) multi-model dataset (Meehl et al. 2007). In the 2010-2039 period, the GFDL falls in the
mid-range for temperature increases and low range for precipitation; the PCM falls in the low
range for temperature and precipitation. By 2070-2099, the GFDL is still in the mid-range



among GCMs for temperature but among the lowest of the 16 GCMs for precipitation, thus
supporting its use in representing a warmer, drier future. The PCM falls in the low range for
temperature and low-mid range for precipitation; annual precipitation shows little change, but
higher amounts than the GFDL. Though by no means high-ranking in precipitation amounts
within the 16 GCM ensemble, the comparison to the GFDL supports its use in representing a
warmer, wetter future.

Climate projections are model simulations that describe potential future changes in climate.
Unless bias corrected, GCM projections of current time climate (here also called baseline) often
do not match measured current climate conditions. In order for future projections to match
baseline climate, the entire record requires adjustment to establish the correct mean and
variability of the baseline model simulations. The four scenarios of our study were therefore
downscaled from the 12 km grid scale to the historical data scale (4 km?) of the Parameter-
Elevation Regressions on Independent Slopes Model (PRISM; Daly et al. 1994), by using the
Gradient-Inverse-Distance-Squared (GIDS) spatial interpolation approach (see Section 2.3.1).
The purpose of this adjustment was to then apply a bias correction. The bias correction brings
the projected future conditions into alignment with baseline conditions, thereby making the
calibration so that future conditions are tied to current climate levels.

To make the correction possible, the GCM is run for an historical time period to establish a
baseline for modeling to match baseline climate. The baseline period for this study is defined as
the PCM and GFDL model runs for 1950-2000, when climate change forcings are assumed
absent from the model, representing baseline (pre-2000) atmospheric greenhouse gas
conditions. This baseline period was then adjusted using the PRISM data from 1950-2000, for
each month and for each grid cell. Our approach to bias correction is a simple scaling of the
mean and standard deviation of the projections to match those of the PRISM data following
Bouwer and others (2004) and described in detail in Flint and Flint (2012). Once the bias
correction is complete, the 4 km projections are further downscaled to 270 m spatial resolution
using the GIDS spatial interpolation approach for model application.

2.3 Data Development

Development of data to run BCM for hydrologic climate change assessments required
downscaling the climate inputs from 12 km grids to 270 m for historic and future projections.
This included downscaling the PRISM data from 4 km? to 270 m? grids, and doing the same for
the four future scenarios. We then had month-by-month and year-by-year data for minimum
temperature (Tmin), Maximum temperature (Tmax), and precipitation (PPT). These were used
as inputs for running the BCM (see below, and Appendix A) to create the additional 11
hydrologic variables (see Appendix B). Finally, we summarized each variable for six 30-year
time slices: 1911-1940, 1941-1970, 1971-2000, 2011-2040, 2041-2070, and 2071-2100, calculating
the mean, standard deviation, rate of change within the 30-year period, and several other values
(see Appendix B).



2.3.1 Downscaling Historic and Future Datasets

Historical climate maps (Tmin, Tmax, PPT) were derived from the empirically based PRISM
monthly precipitation and air temperature database and maps that are available at 4 km spatial
resolution (Daly et al. 2004). We downscaled the PRISM data, described below, to the 270 m
operational grid scale for model application.

All historical and future climate grids and maps of properties need to be at the same grid
scale—in this case, 270 m —for model operation. Spatial downscaling was used to interpolate
precipitation and air temperature grids from coarse-scale grids (4 km) to fine-scale (270 m). The
approach applies a spatial GIDS weighting to monthly point data by developing multiple
regressions for every fine-resolution grid cell for every month. Using the PRISM climate
variables and the 4 km-resolution digital elevation model, parameter weighting is based on the
location and elevation of the coarse-resolution cells surrounding each fine-resolution cell to
predict the climate variable of the fine-resolution cell (Flint and Flint, 2012; modified from
Nalder and Wiens 1998). To remove the “bullseye” effect often associated with certain
interpolation schemes (e.g., kriging, inverse distance squared), the program was modified to
have a search radius that is specified as the size of gridcell of the coarse-resolution grid. The
modified GIDS spatial downscaling technique does not introduce additional uncertainty in the
downscaling process, and may indeed improve the estimate of the climate variable by
incorporating the deterministic influence (such as lapse rates or rain shadows) of location and
elevation on climate. The details of the methodology and the evaluation of uncertainty are
discussed in Flint and Flint (2012).

2.3.2 Description of the Basin Characterization Model (BCM)

The hydrology of a region is a function of the water balance, including the climatic input
precipitation, and how it is partitioned into evapotranspiration; snow accumulation,
sublimation, and melt; changes in soil moisture storage; and subsequently, runoff and recharge.
Basin discharge can subsequently be calculated from runoff and recharge. The BCM
mechanistically models the pathways of a basin’s precipitation into evapotranspiration,
infiltration into soils, runoff, or percolation below the root zone to recharge groundwater. The
evapotranspiration component of the BCM is derived through the use of potential
evapotranspiration equations (PET; Priestley and Taylor 1972), solar radiation, slope and aspect,
and topographic shading. For the purposes of comparison across watersheds (or other
landscape units), PET in the BCM is not interactive with the other segments. In other words,
water demand from plants is independent from other hydrodynamic components in the model.
The soil storage component of the model uses soil parameters to calculate how much water is
available in the soil, a parameter of particular use to plant ecologists, and is also independent
from the other major hydrologic dynamics, except that groundwater recharge, calculated as
infiltration below the zone of evapotranspiration, is calculated only from surplus, after soil
moisture capacity has been filled. Groundwater recharge (recharge) is also tied to runoff, and
the relationship between the two is driven by the level of permeability of bedrock.

The unique response of any given watershed to climate is primarily related to its energy balance
(based on latitude, longitude, elevation, slope, and aspect), soil moisture storage capacity, and
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the characteristics of the materials that are deeper than the rooting zone of vegetation, including
deep alluvial valleys or channels or bedrock that lead to deep percolation into the groundwater
system. The monthly water balance can be calculated using the BCM that was originally
developed for arid and semi-arid lands with minimal streamflow data upon which rainfall-
runoff models rely for calibration (Flint and Flint 2007). The BCM calculates hydrologic
variables on a grid cell basis and can be run at any spatial resolution, generally limited by
computing power or file storage capabilities. For this application we developed a spatial
resolution of 270 m, not so fine-scale to be computationally prohibitive, but fine enough to
capture differences on hillslopes due to variable radiation and soil properties. Grid cell values
can be summarized for any spatial pattern, here using the USGS hydrologic unit code (HUC)
12 watersheds.

The BCM has a number of subroutines or modules. Figure 2 is a schematic of the processes and
calculations addressed in the BCM. The modeling approach begins with the climate as
precipitation and air temperature. This is followed by the calculation of PET. This calculation
relies on an hourly energy-balance calculation that is based on solar radiation, air temperature,
and the Priestley-Taylor equation (Flint and Childs, 1991). Clear sky PET is calculated using a
solar radiation model that incorporates seasonal atmospheric transmissivity parameters and site
parameters of slope, aspect, and topographic shading (to define the percentage of sky seen for
every grid cell) (Flint and Childs 1987). Hourly PET is aggregated into monthly time series, and
cloudiness corrections are made using cloudiness data from National Renewable Energy
Laboratory (NREL). Modeled PET for the southwest United States has been calibrated to
measured PET from California Irrigation Management Information System (CIMIS) and
Arizona Meteorological Network (AZMET) stations.

Using PET and gridded precipitation, maximum and minimum air temperature, and the
approach of the National Weather Service Snow-17 model (Anderson 1976), snow is
accumulated, sublimated, and melted to produce available water (Figure 2). These driving
forces for the water balance have been calibrated regionally to solar radiation and PET data, and
snow cover estimates have been compared to Moderate Resolution Imaging Spectroradiometer
(MODIS) snow cover maps (Flint and Flint 2007). However, the final calibrations of snowmelt
and runoff have illustrated goodness-of-fit, as will be shown in the results.

The calculation of excess water provides the water that is available for watershed hydrology.
Available water occupies the soil profile, where water will become actual evapotranspiration,
and may result in runoff or recharge, depending on the permeability of the underlying bedrock.
Total soil-water storage is calculated as porosity multiplied by soil depth. Field capacity (soil
water volume at -0.3 megapascals [MPa]) is the soil water volume below which drainage is
negligible, and wilting point (soil water volume at -1.5 MPa) is the soil water volume below
which actual evapotranspiration does not occur (Hillel 1980).

Once available water is calculated, it may exceed total soil storage and become runoff, or it may
be less than total soil storage but greater than field capacity and become recharge. Anything less
than field capacity will be calculated as actual evapotranspiration at the rate of PET for that
month until it reaches wilting point. When soil water is less than total soil storage and greater
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than field capacity, soil water greater than field capacity equals recharge. If recharge is greater
than bedrock permeability (K), then recharge = K and excess becomes runoff, else it will
recharge at K until field capacity.

Runoff and recharge combine to calculate basin discharge, and actual evapotranspiration is
subtracted from PET to calculate climate water deficit.

Figure 2: Schematic Describing Relation of Components of the Basin Characterization Model.
Arrows indicate the sequence of calculations.

The BCM can be used to identify locations and climatic conditions that generate excess water by
quantifying the amount of water available either as runoff generated throughout a basin, or as
in-place recharge (Flint and Flint 2007). Because of the grid-based, simplified nature of the
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model, with no routing of runoff to downstream cells, long time series for very large areas can
be simulated easily. However, if local unimpaired streamflow is available, estimated recharge
and runoff for each grid cell can be used to calculate basin discharge that can be extrapolated
through time for varying climates. In addition, the application of the model across landscapes
allows for grid-based comparisons between different areas. Because of the modular and
mechanistic approach used by the BCM, it is flexible with respect to incorporating new input
data or updating of algorithms should better calculations be derived. A flow chart indicating all
input files necessary to operate the BCM, and the output files resulting from the simulations, is
shown in Appendix A.

After running the BCM, the 14 climate and hydrologic variables were produced in raster format
for every month of every year modeled (summarized in Appendix B). To evaluate hydrologic
response to climate for all basins in hydrologic California, we used the BCM to calculate
hydrologic conditions across the landscape for 1971-2000 and to project them for the two GCMs
and two emission scenarios for 2001-2100. Trends in climate, hydrologic derivatives of runoff
and recharge, and climatic water deficit are separately analyzed for both historical-to-baseline,
and baseline-to-future time periods (1911-1940 to 1971-2000, and 1971-2000 to 2071-2100).

2.3.3 Model Performance: Calibration and Validation

Although recharge and runoff were calculated for every grid-cell and summarized as totals for
basins, the estimate of basin discharge as a time series requires a further calculation of
streamflow. Calculation of streamflow uses a series of equations that can be calibrated with
coefficients from existing streamgage data, that then permit estimation of basin discharge for
time periods when there are no streamflow measurements. We calculated basin discharge for
each of 138 basins for which we also obtained streamgage data, and used the 138 streamgage
datasets for calibration and validation.

The regional BCM developed for the southwest United States (California, Nevada, Utah,
Arizona, and parts of New Mexico and Idaho; Flint and Flint 2007, 2009, 2011) was applied to
California following regional calibrations for solar radiation, PET, snow cover, (described
above), and groundwater (described in Flint and Flint 2009, 2011). The California calibration is
based on study areas with ongoing studies (Figure 1, calibration basins) that were designed to
provide runoff and recharge for historic, baseline, and future climatic conditions. Generally the
watersheds used for calibration basins were identified on the basis of lack of impairments, such
as urbanization, agriculture, reservoirs, or diversions, although this was not always possible.
We used 68 basins for which bedrock permeability was iteratively changed to optimize the
match between calculated basin discharge and measured streamflow. Calibration basins
represent 9 of the 14 dominant geologic types in California, and have been calibrated to bedrock
permeability on the basis of mapped geology for California (Jennings 1977; Figure 3;

Appendix C).
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Figure 3: Map of Geology for Study Area with Study Basins

The BCM performs no routing of streamflow, which is done as post-processing to produce total
basin discharge for any basin outlet or pour point of interest, such as streamgages or reservoirs.
The 68 calibration basins were calibrated to optimize the match between BCM-derived
discharge and streamflow by iteratively adjusting the bedrock permeability corresponding to
the geologic types located within the basins to alter the proportion of excess water that becomes
recharge or runoff. (This is iterative among all calibration basins because the geologic units are
mapped consistently across the entire state, and if the permeability is changed to optimize the
fit in one basin it changes the permeability wherever the geology is mapped.) This part of the
calibration process is followed by accounting for stream channel gains and losses to calculate
basin discharge, optimize the fit between total measured volume and simulated volume for the
period of record for each gage, and maintain a mass balance among streamflow and BCM
recharge and runoff.
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As described, BCM simulates recharge (BCMr) and runoff (BCMun) for each 270 m grid cell for
each month (7). To compare them to gaged mean monthly streamflow, all gridcells upstream of
the streamgage are summed for each month to create time series for BCMrun and BCMrei. To
transform these results into a form that can be compared to the pattern and amount of gaged
streamflow, the water balance is conceptualized as consisting of two units that are hydraulically
connected through a shallow storage zone (GWhniiow®). The two units are the basin discharge
(Stream) and regional aquifer (GWuep(). A set of empirical flow-routing equations defines
storage in successive time-steps (i) and performs partitioning. GWhnaiow is the computational
method used to extend streamflow for time-steps when BCMruni) and BCMrani) are zero (e.g.,
during seasonal and annual dry periods). For time-steps when BCMun) and BCMeii) are non-
zero, the amounts are accumulated for the grid cells upstream of a streamgage. Initially the
water in GWanaow) is evaluated as

GWshallow(i) = (I-RMTISCQZET’)* BCMrun(i) + BCMrch(i) + Gstor(i-l) (Eq 1)

Runscaler is a coefficient (< 1) that is used to match peak flows, and (1-Runscaler) is the direct
loss of peak flows to GWisniiw. Carryover of groundwater storage from the previous time-step
(GWsiorin) is set by the parameter exp (< 1).

GWstor(i) = (G‘/\/shallow(i-l))exp (Eq 2)

The overland flow component is comprised of the direct runoff and baseflow. The direct runoff
is calculated (Eq. 3) from BCMun and the Runscaler (from Eq. 1), and the baseflow/recession
component is partitioned from GWisnaiow) minus carryover to the next month (GWtwri), see Eq. 2)
using the parameter Rchscaler (<1).

Runoffi = BCMrun* Runscaler + Baseflow: (Eq. 3)
Baseflow) = (GWshattowtsy — GWitor(v) * Rchscaler (Eq. 4)

To maintain mass-balance, the carryover (GWstor) is subtracted from the Baseflow. The sum of
Runoffw and Baseflow is the storage water partitioned to Stream.

Streama = Runoffi + Baseflowa (Eq. 5)

Streamq is the post-processed portion of the BCM water-balance that is compared to the pattern
and amount of gaged streamflow. The amount partitioned to the regional aquifer is the residual
water in the shallow storage zone, minus carryover (GWstwr) to the next month,

GWaeep(i) = GWehattow(i) — GWistorti) — Baseflowa, (Eq. 6)

which is equivalent to (1-Rchscaler) + Baseflow. Together these equations represent a conceptual
routing scheme. It is not based on extensive system properties, nor is it a formal mass balance;
however, it is an aggregate mass-balance check for all time-steps in the water-balance period

(Eq. 7).
> BCMrun + Y BCMran - y-Discharge - 3 GWieey =0 (Eq.7)
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The mass-balance, aggregated for all time steps, is checked (see Eq. 7). In practice, Runscaler is
estimated to visually match measured streamflow peaks, and exp is adjusted to preserve the
mass balance described in Eq. 7. The parameter Rchscaler is then used to match measured
streamflow. Bedrock permeability, which is initially assigned on the basis of geology, is also
iteratively adjusted to improve the match between gaged streamflow and the basin discharge,
Stream), and the mass balance.

BCM:ech and BCMrun reflect natural hydrologic conditions and do not account for diversions,
reservoir storage or releases, urban runoff, groundwater pumping, or other impairments, and
therefore will not exactly match measured streamflow in impaired basins.

Generally, regions with low summer flows in more arid environments have low baseflow
exponents, exp; whereas, regions with a large groundwater component, such as the volcanics in
the upper Klamath basin, will have a large exp. The multiplier used to reduce the recharge
component that makes it to the streamgage, Rchscaler (Eq. 4), is generally very low in desert
areas with deep unsaturated zones and high in large basins with high baseflows. This allows for
deep groundwater flow, GWeep, to be calculated as in Equation 6, for application to
groundwater flow models.

For comparison to the calibration basins, and to evaluate model performance representing the
state, 71 additional validation basins were identified for the calculation of discharge on the basis
of general lack of impairments, as well as statewide coverage of landscapes and geology.
Hydrologic results for these basins were developed on the basis of the calibration to bedrock
permeability performed using the calibration basins. The calibrations and validation basins are
distributed across the range of elevation, aridity (calculated as average annual precipitation
divided by PET), and bedrock permeability, in comparison to all basins in California (Figure 4,
left panels), and we also show the relationship between them for the same three environmental
conditions (Figure 4, right panels). Study basins generally cover the range of elevations for the
state (Figure 4). Bedrock permeability as a representation of geology is dominated by lower
permeability basins because very high permeability basins, such as those with alluvial valley
fill, do not generate streamflow (Figure 4).

The range of climates in the state, represented by the UNESCO Arid Zone Research program
aridity categories (precipitation divided by PET; UNEP 1997), is covered less well by the study
basins and neglects the hyper-arid and arid locations due to lack of streamflow data (Figure 4).
The representation of study basins within the ecoregions in the state also reflects the lack of
streamgage data in the desert areas, as well as in the eastern side of the Sierra Nevada, and in
the deep soils of the Central Valley (Great Valley), where any gaged streams are very impaired.
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Figure 4: Plots on the Left Show All 5128 Watersheds in California (black) and Study Basins (red)
lllustrating the Range of Representation by Study Basins for Elevation, Bedrock Permeability, and
Aridity. Plots on the right show the distribution of Calibration and Validation gages for the same.

Example calibrations are shown for Dry Creek near Cloverdale in the Russian River basin, the
Napa River near Calistoga in the North Bay Counties, and Big Creek above Pine Flat Reservoir
near Trimmer, in the Kings River basin in the southern Sierra Nevada (Figure 5). All three have
moderate baseflows, but Dry Creek loses 40 percent of both the calculated runoff and recharge
to the groundwater system, the Napa River loses none of the runoff and 30 percent of the
recharge to the groundwater system, and Big Creek, located in granitic geology toward the
lower elevations of the Kings River basin, loses nothing to the groundwater system

(Appendix C). Also shown are calibrations for two locations considered impaired: Aptos Creek
at Aptos, California, and Sprague River, near Beatty, Oregon.

17



[

I 1i Hﬁﬁf(

bl

i
Titls:lrdd

h §

—=—BCM
+
1 ﬁ

U ¥V VST WY W W WY WY W W T W W W W W W W e

b

|

—+—Dry C Nr Cloverdale Ca
- :

o o o
g & & R

suolliN

cw ‘a8.eyasip uls

-
™~
o
-

LL6T

SL6T

o0
™~
o
-

TL6T

6961

L9617

m uwn
L]
o o
- -

T96T

6S6T

LS6T

SS6T

€561

-
uw
o
-

6V6T

LY6T

wn
=<
o
-t

EV6T

=
=<
o
-

€867
€867
7867
2861
7867
1867
1861
1867
- 0861
0861
0861
: 6L6T
: 6L6T
- 6L6T
. 8L6T
mmnmﬁ

8L6T
LL6T
LL6T
- LL6T
9L6T
9L6T
. 9L6T
L SL6T

—-=—BCM

Nvened Sowred N\

——Napa R At Calistoga Ca

CUEE S =

suoljIA

g€w ‘a3.eydsip uiseg

261
4 161
b 45 o6
[
| 6961
. A an
g —4g 8961
[1-]
S {
5 L961
m 9961
= | 5961
2
2 961
2 p|
Q
2 2961
[
8 1961
[F 9 1l
2 k 0961
o
v AF oc61
3 o
2 ) sser
E .uu 1561
S 9561
o
i 5561
4 vs6T
« €561
Qo o m o © o
O uwn M N -

SuoljiIN

cw ‘@81eydsip uise

—=—BCM

%

]

——Aptos C A Aptos Ca

MO BT NN A

suoljIA

gw ‘adieyasip uiseg

TL6T

0461

6961

8961

L967

9967

S96T

1967

€961

7961

T961

0967

6567

8567

0661
6861
8861
£861
9861
S86T
v861
€861
Z861
1861
0861
6L6T
8L61
“§ se61
9L6T
SL6T
vL6T
€461
zL6T
1L6T
0L6T
6961
8961
2961
9961
S96T
v961
€961
2961
1961
0961
6561
8561
b LS6T
9561
SS6T
vSe6tT
€561

g .

v ww

-

——BCM
4

T e

T

—+Sprague River Near Beatty OR
a

100

e o o o
8 &R A
suolN

sw ‘a8ieyds|p ujs g

Figure 5: Calibration Time Series Comparing Measured and Estimated Basin Discharge in Millions

of Cubic Meters, for Five Calibration Basins: (a) Dry Creek near Cloverdale, California, (b) Napa
River at Calistoga, California, (c) Big Creek above Pine Flat Reservoir near Trimmer, California,

(d) Aptos Creek at Aptos, California, and (e) Sprague River near Beatty, Oregon.
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Calibration statistics are shown in Appendix C and spatially in Figure 6, with the linear
regression r? for monthly and yearly comparison of measured and simulated basin discharge,
and the Nash-Sutcliffe efficiency statistic (NSS; Nash and Sutcliffe 1970) calculated as 1 minus
the ratio of the mean square error to the variance. The NSS is widely used to evaluate the
performance of hydrologic models, generally being sensitive to differences in the observed and
modeled simulated means and variances, but is overly sensitive to extreme values, similarly to
r? (Legates and McCabe 1999). The NSS ranges from negative infinity to 1, with higher values
indicating better agreement. Average calibration statistics for all basins are NSS = 0.65, monthly
r2=0.70, and yearly r2= 0.86.

In our study, calibration basins have a mean NSS of 0.71 (standard deviation 0.18), with the
higher values for the Russian River basin, just north of the San Francisco Bay Area, and lower
values for the Santa Cruz basins, just south of the Bay Area, where there are many urban
impacts (Figure 6 top; Appendix C). There are several cases where urbanization and agriculture
were identified as factors resulting in the inability to calculate a mass balance. The measured
streamflow at Aptos Creek at Aptos (Figure 5d) had very high peaks that were not reproduced
by the BCM. This basin is dominated by urbanization, suggesting that the high peak flows were
a result of urban landscapes enhancing runoff, both during precipitation events where there is
reduced infiltration and during the summer when urban runoff is enhanced —neither of which
is taken into account in the BCM. In order to match measured volumes and streamflow
patterns, the runoff is reduced by 80 percent, and the recharge is reduced by 50 percent. An
example of diversions and groundwater pumping for public use can be seen in the difference
between the Merced River at Happy Isles, upstream of Yosemite Village, and the Merced River
at Pohono, downstream of Yosemite Village, where the percentage of runoff is reduced to

45 percent to match measured flows (Appendix C).

The basin discharge for the validation basins, not used for calibration, was developed using the
adjusted bedrock permeability values developed during calibration. The mean NSS for these
basins is 0.61 (standard deviation 0.20), with the upper Klamath and small basins in the Modoc
Plateau volcanics performing the poorest (Figure 6a). This is likely due to the large groundwater
reservoir in the volcanics that has very long travel times from precipitation input to outflow in
streams. An example of a calibration in the volcanics for the Sprague River basin illustrates the
large baseflow component with high baseflow exponent (Figure 5e). The Sprague River basin
also has a large agricultural component and return flows, so the attempt to maintain a match in
volumes results in an overestimate of the peak flows. The presence of a groundwater reservoir
also shows in the differences between the r? values for the monthly and yearly values (Figures 6
left and 6 right), which identifies lags in the monthly calibration between measured and
simulated discharge that are negated when calculated yearly. There is a large difference for the
Kings River above the North Fork near Trimmer, for example, indicating the potential for a lag
in groundwater flows becoming baseflows that appear at the base of the basin and not being
accounted for in a monthly model; whereas, the yearly 12 is very high. The basins in the
volcanics consistently show a larger range in the two 12 values, which is also illustrated in the
Sprague River near the Beatty, Oregon, calibration (Figure 5e) by the mismatch in the timing of
the peaks.
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Figure 6: Map of Study Basins lllustrating the Spatial Distribution of the Calibration Statistics for
the (top) Nash-Sutcliffe Efficiency Statistic, (left) Monthly r? and (right) Yearly r?
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2.3.4 Post Processing: 30-year and 10-year Summaries and Statistics

For California, we produced 270 m grids to represent historic and future climates from 1900 to
2100, resulting in 6,594,862 grid cells statewide, and a map for each of the 14 variables for each
month. For the historic data and four future scenarios, this produced over 11 terabytes of data.
We then created water year summaries of the 14 variables. The water year starts in October and
ends in September. For the two temperature variables we averaged the temperature over the
water year, and for the other 12 variables we summed all data for 12 months

Since retaining yearly values for this region results in unwieldy large files, we reduced the data
size for distribution and analysis to 30-year summaries, providing monthly average values for
variables historically for 1911-1940, 1941-1970, and 1971-2000. Future climate values are based
on 100-year simulations, with 2010-2039, 2040-2069, and 2070-2099 time slices produced. We
also developed summaries for 10-year periods based on time slices starting with 1911-1920 and
running through 2090-2099. Appendix D has a list of all available variables, file size, format, and
acronym.

We wrote a program to summarize the 30-year datasets by various statistical measures, to create
a manageable dataset for analysis of long-term trends. We calculated these statistics for both
annual (water year) and monthly average values. Statistics were developed for each 30-year
time period by applying a linear regression model to the input rasters, which produced the
seven statistics (average, standard deviation, coefficient of variation, variance, coefficient of
determination, slope, and intercept) for each variable for each 30-year time period. The linear
regression model used equations from Zar (1999). Change over the historical baseline period
1971-2000 was described as the slope of the regression model multiplied by 30 years.

To test the statistical significance of change between two time slices, t-values were calculated on
a per grid cell basis. This was computed as:

X -X

t = =—=—21— (Eq. 8)
varz  vars
nz ni

Where X the 30-year mean and var is the 30-year variance (both outputs from the linear
regression model explained above). The n variable was set to 30 since both time periods were
30 years in length. The subscripts represent the different time periods, “1” is used for the base
and “2” is used for the future. Therefore, for historical change analyses 1 was 1911-1940 and
2 was 1971-2000; for future change analyses 1 was 1971-2000 and 2 was 2070-2099. Once the
t-value was determined, 2.045 was used as the threshold for determining if the change was
statistically significant or not. This threshold reflects a 95 percent confidence interval using

29 degrees of freedom.

The development of the PRISM climate data itself is not corrected for new or terminated
stations or changes in measurement methods over time, which can lead to artifacts in spatial
maps of long-term changes, as well as in temporal changes in areal averages. This analysis is
intended to indicate large-scale, general patterns of change over the study area, which is
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appropriate for using PRISM, not to calculate statistical significance. Therefore, general
direction and magnitude of change within ecoregions, for example, is the appropriate use of
the data.

Sector 3: Results

3.1 BCM Climate and Hydrology Results

We characterized the variables calculated by the BCM for watersheds and for ecoregions, and
compared historical summaries and patterns to future projections. We report three analyses:

(1) trends in the time slice characterizing the baseline time period (1971-2000); (2) the calibration
and validation of basin discharge by comparing post-processed runoff and recharge measures
to derive discharge, and comparing that value to streamgage measurements; and (3) a
comparison of the historical and future conditions for BCM variables —precipitation, potential
evapotranspiration, runoff, recharge, and climatic water deficit. We present the map-based
assessments, using the difference in magnitude (absolute value) for each variable; the number of
standard deviations by which projected future conditions will differ from the standard
deviation of baseline conditions; and the geographic variations across California of both
historical and future projections. Temperature values are available, but for brevity, and because
temperature has previously been more widely reported, this paper focuses on hydrological
components.

3.1.1 Patterns in Baseline 30-year Climate and Hydrology

The process used to estimate hydrologic impacts of climate change at fine scales involved
downscaling climate data for model input. Pre-processing included development of PET
estimates from the downscaled air temperature. The BCM then generated outputs as a series of
hydrologic and associated variables. This section discusses: precipitation, air temperature, PET,
snowpack, runoff, recharge, and climatic water deficit.

During the 30-year baseline period of 1971-2000, precipitation generally increased, with the
exception of the deserts and eastern Sierra Nevada (Table 1). Largest percentage increases are in
the Great Valley, Central Western California, and Sierra Nevada. Both minimum and maximum
air temperatures increased for all ecoregions, ranging from 0.5°C to 1.6°C (0.9°F to 2.9°F) for
minimum air temperature and much less of an increase for maximum air temperature (Table 1).
Potential evapotranspiration increased throughout the state by about 3 percent. Recharge
decreased by up to 24 percent in southwestern California, and by 11 percent in northwestern
California, while all other ecoregions increased in recharge. Recharge in the Mojave Desert
increased by 51 percent (an increase of 1.4 millimeters per year [mm/yr]), and in the Modoc
Plateau by 42 percent (an increase of 18.2 mm/yr) (Table 1).

The change in climate over the 30-year period is exemplified by the changes in snowpack in
California, which integrates effects of precipitation and air temperature on the dominant water
resource in California for water supply. The snowpack in this region is the warmest in the
western United States (Lundquist et al. 2004) and is the most sensitive to small changes in air
temperature. This is illustrated by the change in April 1 snowpack (Figure 7), where snowpack
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has diminished the most in extent in the northern portions of the state; whereas, the highest
elevation snowpack in the southern Sierra Nevada mountains and Mount Shasta have actually
increased in some locations. However, the dominant loss of April 1 snowpack results in less
runoff to extend surface water resources throughout the summer season. This situation has
implications for recharge and climatic water deficit as well.
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Figure 7: Map of Change in April 1 Snowpack, Calculated as Snow Water Equivalent,
for 1971-2000

Corresponding to increases in precipitation, runoff increased over the baseline period in most
locations in the state, notably the northern Sierra Nevada Mountains and parts of the Trinity
Mountains in the northwestern ecoregion (Table 1; Figure 8). Some declines are noted in the
northwest, where the smallest change in precipitation occurred. Decreases in recharge are
notable in the northwest portions of the state, with moderate decreases in the Sierra Nevada
foothills and southern California mountains (Figure 8). Generally locations with little to no
recharge, such as areas with deep soils or arid climate, also had little to no change in recharge
indicated. Some increases in recharge are indicated in the northeast and in parts of the high
Sierra. Detailed views of basins in the Russian River watershed (north of San Francisco Bay) and
Santa Cruz mountains (south of San Francisco Bay) are shown in Flint and Flint (in review),
illustrating the dominance of runoff in the Russian River watershed, where water supply relies
heavily on reservoirs, in contrast to the reliance on groundwater resources and recharge in the
Santa Cruz mountains.
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Table 1: Climate and Hydrologic Variables for Modified Jepson Ecoregions in California.
Mean value and change for 1971-2000.

Central East of

Northwestern Cascade Modoc Western Great Sierra Sierra  Southwestern Mojave Sonoran

Ecoregion CA Ranges Plateau CA Valley Nevada Nevada CA Desert  Desert

mean 1,450 1,132 442 559 346 947 320 481 162 116

Precipitation  change 38 142 54 121 83 143 -1 32 -2 -5

(mm) % change 3% 13% 12% 22% 24% 15% 0% 7% -1% -5%

Minimum Air— ean 5.4 2.5 0.5 73 92 2.9 0.1 87 104 14.2
Temperature

(Q) change 0.5 1.2 0.8 1.0 1.2 1.4 1.4 1.3 1.6 1.1

Maximum Air = mean 18.9 171 155 219 242 169 162 228 252 29.9
Temperature

(@] change 0.8 0.7 0.2 0.7 0.6 0.8 1.4 1.0 1.2 1.2

Potential mean 1,032 1,043 1,025 1,267 1,353 1,151 1,164 1,373 1,464 1,511

Evapotranspir-  change 20 39 20 37 35 49 69 54 63 46

ation (mm) % change 2% 4% 2% 3% 3% 4% 6% 4% 4% 3%

mean 457.7 351.4 43.4 65.3 111 215.9 47.0 39.5 2.8 1.0

Recharge change -51.3 28.7 18.2 2.5 2.3 12.5 3.1 -9.6 1.4 0.1

(mm) % change -11% 8% 42% 4% 21% 6% 7% -24% 51% 8%

mean 476.6 277.0 40.5 97.8 6.0 300.2 46.6 69.8 1.3 1.8

Runoff change 52.8 84.5 18.3 73.2 7.4 97.6 3.5 25.9 0.9 0.9

(mm) % change 11% 30% 45% 75% 124% 32% 8% 37% 73% 53%

Climatic mean 489 425 544 868 1,016 557 743 985 1,290 1,344

Water Deficit  change -4 25 16 -8 -42 30 93 45 75 48

(mm) % change -1% 6% 3% -1% -4% 5% 12% 5% 6% 4%
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Figure 8: Maps of Change in Runoff and Recharge over the 1971-2000 Baseline Period, Binned as

14 Standard Deviation from the Mean, and Including Study Basins. The locations where increases

have occurred in runoff or recharge are indicated by cool colors, greens and blues, and decreases
by warm colors, yellows, and oranges.

Increases in runoff in snow-dominated regions, due to warming air temperatures, diminishes
recharge, which is more likely to occur during the slow snowmelt season. This is confirmed for
the northwestern ecoregion, where the Trinity Alps decreased in snowpack, and shows small
increases for the Sierra Nevada, in contrast to other regions (Figure 7).

Figure 9a shows the average annual climatic water deficit for 1971-2000. There is high climatic
water deficit in the southern Central Valley and Mojave and Sonoran Deserts, and low climatic
water deficit in the north coast and Sierra Nevada. Climatic water deficit declined (that is, it
became wetter) over the baseline period in the central and northwestern California ecoregions
and the Great Valley, while in all other regions, despite the increases in precipitation, climatic
water deficit increased (Figure 9b). This variable integrates energy loading and moisture
availability from precipitation with soil water holding capacity. The distribution of moisture
conditions that generally define the amount of water in the soil that can be maintained for plant
use throughout the growing season and summer dry season corresponds very well to the
established distribution of vegetation types. However, in many locations, shallow soils limit the
contribution of precipitation. The lowest climatic water deficits in California are in regions with
snowpack that, as it melts in the springtime, provides a longer duration of available water, thus
maintaining a lower annual climatic water deficit, even despite shallow soils. Locations in the
south with higher PET have higher climatic water deficits.
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Figure 9: Maps of (a) Average Annual Climatic Water Deficit and (B) Change in Climatic Water
Deficit over the 1971-2000 Period, Binned as Y2 Standard Deviation from the Mean

Precipitation has increased in most locations, but has declined in the desert and eastern Sierra
Nevada. Air temperature and PET have increased in all ecoregions (Table 1). This translates into
increases in climatic water deficit in nearly all locations, and particularly those dominated by
snowpack, such as the Sierra Nevada ecoregion and Trinity Mountains in the northwestern
California ecoregion. The recorded increases in air temperature, particularly minimum air
temperature, result in earlier snowmelt and reduce the ability of the snowpack to sustain the
water available throughout the summer season. The deserts all increased in deficit with
declining precipitation and increasing air temperature. However there are some small areas in
the Great Valley ecoregion that experienced small decreases in deficit because of the ability of
the deep soils to store the additional precipitation rather than result in recharge or runoff. Some
moderating effects of coastal climatic conditions are seen in small valleys along the coast with
decreases in deficit.

3.1.2 Historic to Future Climate and Hydrology

In the analysis of the impacts from historic (1911-1940) to future (2070-2099) climate on
hydrology, we characterized the changes in precipitation, PET, runoff, recharge, and climatic
water deficit from the BCM for watersheds and for ecoregions, and compared changes in
variables from historical to baseline periods and from the baseline period to the end of the
twenty-first century. Three types of map analyses were applied to this comparison:

(1) assessment of the difference in magnitude (absolute value) for each variable; (2) the number
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of standard deviations of baseline conditions (defined as the 30-year time slice representing
baseline time, 1971-2000) by which historic and projected future conditions differ; and (3) a
geographic review of the variations in hydrologic conditions across California for both
historical and future time periods.

A summary of variables by modified Jepson ecoregion (Table 2) and for the HUC 12 watersheds
averaged for the extent of California (Appendix E) was calculated. Overall, mean precipitation
increased by 80 millimeters (mm) between 1911-1940 and 1971-2000 (baseline, Appendix E).
Under the PCM scenarios, precipitation continued to increase to 2070-2099 (36 to 66 mm), but it
decreased under the GFDL scenario (-74 to -113 mm). Potential evapotranspiration increased

10 mm from historic to baseline time frames, and increased under all future time frames
between 51 and 104 mm. Runoff increased historically 36 mm. It increased under future PCM
projections by 51 to 77 mm, but decreased under GFDL projections by 38 to 42 mm. Finally,
climate water deficit (CWD) decreased by 16 mm from historic to baseline time; however, it
increased under all projections between 40 and 174 mm, indicating increases in PET and
decreases in available soil moisture resulting in lower actual evapotranspiration.

3.1.2.1 Precipitation

While most of northern California got wetter from the historic to baseline time, only the
northeast, an eastern area representing the high Sierra Nevada and Inyo/White mountains, and
a few scattered watersheds saw an increase that was even one-half a standard deviation (SD)
from the baseline SD for the 30-year mean, a pattern that is mostly repeated when looking at the
statistically significant trends (Figure 10). This suggests that the trend in increased moisture is
well within the baseline variability of precipitation from year to year. The same is true for the
southern half of the region, which mostly shows a drying trend. As expected, given the GCMs
selected, the PCM future scenarios forecast increased precipitation, and GFDL forecasts a drier
future (Figure 11, Table 2). However, compared to baseline precipitation variability and
statistically significant change, only the desert ecoregions receive more than 0.5 SD more
precipitation under PCM, while under GFDL A2, the northern half of California loses
precipitation mostly between 0.5 and 0.9 SD (Figures 12 and 13).
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Table 2: Climate and Hydrologic Variables for Modified Jepson Ecoregions in California.
Mean and standard deviation for 30-year time periods from 1911-2000 and 2070-2099.

Historic Historic Current PCM B1 PCM A2 GFDL B1 GFDL A2
(1911-1940) | (1941-1970) | (1971-2000) | (2070-2099) | (2070-2099) (2070-2099) (2070-2099)
Modified Jepson Ecoregions | mean / std mean / std mean / std mean / std mean / std mean / std mean / std
Precipitation | Cascade Ranges 967 / 426 1111 / 490 1132 / 494 1219 / 522 1158 / 493 978 / 397 925 / 406
Central Western CA 496 / 170 519 / 196 559 / 196 607 / 213 604 / 204 463 / 155 448 / 151
Mojave Desert 133 / 63 133 / 59 162 / 64 206 / 76 189 / 69 155 / 60 136 / 55
Sonoran Desert 104 / 52 92 / 45 116 / 52 163 / 62 153 / 64 126 / 58 103 / 47
Great Valley 302 / 122 315 / 137 346 / 139 383 / 148 382 / 148 293 / 113 276 / 103
Modoc Plateau 366 / 153 428 / 176 442 [ 178 478 [ 197 450 / 178 413 / 172 373 / 163
North Western CA 1258 / 539 1446 / 625 1450 / 598 1571 / 625 1475 / 573 1281 / 560 1197 / 528
Sierra Nevada 832 / 356 919 / 417 947 [ 424 1032 / 448 1016 / 431 816 / 364 763 / 336
East of Sierra Nevada 281 / 236 297 / 221 320 / 231 359 / 249 345 / 246 282 / 202 256 / 189
Southwestern CA 461 / 160 439 / 154 481 / 157 572 / 185 545 / 169 435 / 135 404 / 134
California 511 / 467 561 / 541 586 / 534 649 / 566 622 / 535 518 / 467 481 / 442
Potential Cascade Ranges 1047 / 81 1035 / 83 1043 / 77 1093 / 75 1116 / 73 1099 / 73 1139 / 71
Evapotrans- Central Western CA 1246 / 69 1245 / 67 1267 / 67 1315 / 71 1343 / 73 1325 / 72 1370 / 76
piration Mojave Desert 1448 / 78 1444 / 76 1464 / 77 1519 / 75 1547 / 74 1528 / 73 1578 / 71
Sonoran Desert 1495 / 46 1491 / 51 1511 / 46 1555 / 43 1578 / 43 1563 / 43 1605 / 42
Great Valley 1342 / 81 1337 / 82 1353 / 79 1397 / 81 1420 / 82 1403 / 81 1442 / 83
Modoc Plateau 1019 / 57 1013 / 57 1025 / 55 1077 / 55 1102 / 55 1085 / 56 1128 / 58
North Western CA 1025 / 107 1023 / 110 1032 / 108 1073 / 110 1095 / 111 1081 / 109 1119 / 110
Sierra Nevada 1149 / 132 1138 / 134 1151 / 135 1210 / 131 1238 / 129 1215 / 130 1263 / 127
East of Sierra Nevada 1162 / 118 1156 / 121 1164 / 128 1225 / 124 1256 / 123 1238 / 124 1296 / 122
Southwestern CA 1352 / 63 1338 / 64 1373 / 66 1429 / 62 1458 / 62 1437 / 63 1486 / 62
California 1241 / 194 1235 / 194 1251 / 198 1302 / 199 1328 / 199 1310 / 199 1355 / 200
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Table 2: (continued)

Historic Historic Current PCM B1 PCM A2 GFDL B1 GFDL A2
(1911-1940) | (1941-1970) | (1971-2000) | (2070-2099) (2070-2099) (2070-2099) (2070-2099)
Modified Jepson Ecoregions | mean / std mean / std mean / std mean / std mean / std mean / std mean / std
Runoff Cascade Ranges 200 / 249 255 / 304 277 / 311 327 / 341 298 / 323 192 / 230 198 / 239
Central Western CA 73 / 104 79 / 121 98 / 133 131 / 153 128 / 150 60 / 90 66 / 94
Mojave Desert 1/7 1/6 1/7 4 /13 2/8 1/5 1/5
Sonoran Desert 2/9 1/5 2/9 4/ 16 4/ 18 2 /11 2 /10
Great Valley 4 /19 4 /20 6/ 25 10 / 34 10 / 36 4 /16 3/ 16
Modoc Plateau 24 | 65 33 / 85 41 / 91 46 / 100 34 / 83 27 |/ 75 22 / 68
North Western CA 354 / 392 459 / 474 477 | 456 581 / 477 516 / 441 383 / 404 368 / 379
Sierra Nevada 240 / 244 281 / 292 300 / 297 346 / 315 342 / 309 212 / 226 200 / 214
East of Sierra Nevada 42 /117 42 / 108 47 / 122 51/ 128 48 / 123 31/ 91 25 / 76
Southwestern CA 59 / 93 56 / 88 70 / 97 113 / 130 94 / 113 50 / 68 55 /75
California 102 / 222 125 / 271 134 / 274 164 / 305 150 / 284 100 / 223 96 / 212
Recharge Cascade Ranges 294 / 243 367 / 291 351 / 274 352 / 269 330 / 254 269 / 218 246 / 207
Central Western CA 56 / 60 59 /71 65 / 70 66 / 66 69 / 66 42 / 50 46 / 51
Mojave Desert 2/7 2/8 3/9 5/ 11 3/10 1/6 2/6
Sonoran Desert 1/4 1/4 1/4 2/5 2/6 1/4 1/4
Great Valley 8 /27 9 /31 11/ 34 13 / 37 14 / 38 6/ 21 7/ 22
Modoc Plateau 29 / 60 38 / 77 43 / 82 46 / 88 37 /74 31 / 68 25 / 59
North Western CA 416 / 336 483 / 378 458 / 356 438 / 334 426 / 324 382 / 313 350 / 284
Sierra Nevada 188 / 213 219 / 256 216 / 250 218 / 246 213 / 238 165 / 195 152 / 176
East of Sierra Nevada 42 / 87 44 | 85 47 / 90 62 / 109 58 / 108 38 /76 34 /72
Southwestern CA 39 / 48 37 / 46 40 / 46 40 / 42 43 / 44 28 / 31 27 / 29
California 106 / 212 123 / 246 121 / 234 120 / 226 116 / 218 95 / 195 88 / 178
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Table 2: (continued)

Historic Historic Current PCM B1 PCM A2 GFDL B1 GFDL A2

(1911-1940) | (1941-1970) | (1971-2000) | (2070-2099) (2070-2099) (2070-2099) (2070-2099)

Modified Jepson Ecoregions | mean / std mean / std mean / std mean / std mean / std mean / std mean / std

Climatic Cascade Ranges 459 / 200 427 / 202 425 / 196 490 / 185 541 / 181 523 / 184 626 / 182
Water Central Western CA 878 / 133 861 / 140 868 / 136 904 / 142 935 / 143 960 / 140 1032 / 141
Deficit Mojave Desert 1299 / 150 1296 / 150 1290 / 153 1314 / 148 1356 / 145 1364 / 145 1437 / 140
Sonoran Desert 1341 / 268 1348 / 270 1344 / 268 1346 / 268 1378 / 273 1386 / 275 1450 / 284

Great Valley 1050 / 191 1030 / 205 1016 / 201 1034 / 210 1058 / 210 1112 / 188 1172 / 182

Modoc Plateau 576 / 197 530 / 198 544 / 194 619 / 202 665 / 195 657 / 198 756 / 201

North Western CA 509 / 192 486 / 193 489 / 192 512 / 201 559 / 196 553 / 196 633 / 197

Sierra Nevada 574 / 296 551 / 290 557 / 294 631 / 270 683 / 256 670 / 271 775 / 255

East of Sierra Nevada 762 / 319 751 / 309 743 / 319 830 / 313 888 / 302 886 / 307 994 / 292

Southwestern CA 972 / 142 973 / 142 986 / 136 1003 / 132 1042 / 126 1071 / 135 1156 / 132

California 869 / 381 852 / 391 853 / 387 892 / 372 934 / 365 942 / 375 1025 / 363
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Figure 10: The Difference in Annual Precipitation for HUC 12 Watersheds between 1911-1940 and
1971-2000 (a), Normalized to the Standard Deviation over the 1971-2000 Period (b), and
Statistically Significant Areas of Change, as Measured Using a T Test at a = .05
Significance Level (c)

31



Figure 11: Difference in Annual Precipitation (PPT) for HUC 12 Watersheds between Future (2071
2100) and Baseline (1971-2000) for the GFDL and PCM A2 and B1 Scenarios
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Figure 12: The Difference in Precipitation for HUC 12 Watersheds between Future (2071-2100) and
Baseline (1971-2000), Normalized to the Standard Deviation over the Period 1971-2000
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Figure 13: Statistically Significant Areas of Precipitation change between Future (2071-2100) and
Baseline (1971-2000), as Measured Using a T Test at a = .05 Significance Level
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3.1.2.2 Potential Evapotranspiration

The calculation of PET using the Priestley-Taylor equation assumes that PET is a function of,
and is non-linearly related to, air temperature. The application of PET in the BCM assumes that
plants are in equilibrium with their environment and will transpire at maximum rates until the
soil reaches the wilting point. Potential evapotranspiration increased from historical to baseline
time periods in most of California, with the exception of a few places in the Sierra Nevada,
where it decreased between 0.5 and > 2 SD of baseline PET values, with similar patterns in the
significance values (Figure 14). The extreme change in these locations is due to cooling air
temperature, but because PET is already low in these locations, due to the non-linear relation
between PET and air temperature, the change is greater than if the PET were initially high.
Potential evapotranspiration is projected to increase under all scenarios and for all ecoregions
(Figure 15, Table 2) and shows one of the strongest spatial patterns of all the variables, with
nearly the entire region increasing by at least 1 SD, and statistically significant under the PCM
projections, and by >2 SD under the GFDL projections (Figures 16 and 17).
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Figure 14: The Difference in Annual Potential Evapotranspiration (PET) for HUC 12 Watersheds
between 1911-1940 and 1971-2000 (a), Normalized to the Standard Deviation over the 1971-2000
Period (b), and Statistically Significant Areas of Change, as Measured Using a T Test at a = .05
Significance Level (c)
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Figure 15: The Difference in Annual Potential Evapotranspiration (PET) for HUC 12 Watersheds
between Future (2071-2100) and Baseline (1971-2000) for GFDL and PCM A2 and B1 Scenarios
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Figure 16: The Difference in Potential Evapotranspiration for HUC 12 Watersheds between Future
(2071-2100) and Baseline (1971-2000) Normalized to the Standard Deviation over the 1971-2000
Period for GFDL and PCM A2 and B1 Scenarios
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Figure 17: Statistically Significant Areas of Potential Evapotranspiration change between Future
(2071-2100) and Baseline (1971-2000), as Measured Using a T Test at a = .05 Significance Level
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3.1.2.3 Runoff

Annual runoff values increased slightly in California between 1911-1940 and 1971-2000

(Figure 18), a change driven by increases throughout the northwest ecoregion, and in the
northern Sierra Nevada. Looking at this difference relative to the standard deviation during the
baseline time period, none of the watersheds had runoff increase by more than one standard
deviation, but a few (40) in the desert ecoregions decreased by more than one. This is because
the annual runoff in these watersheds was less than 3 mm in 1911-1940 and less than 1 mm in
1971-2000. Comparing the baseline conditions to future scenarios (2070-2099), the PCM model
shows an increase in runoff for all ecoregions except the Modoc Plateau (Table 2), and especially
in the Sierra Nevada and the coast ranges, while the GFDL model shows an almost inverse
pattern of drying (Figure 19). Because of the very low runoff values in the baseline time period,
the incremental increases in the desert regions of the study show future runoff to be above 1 SD
(and in many places above 2 SD) under the PCM model. For the GFDL model, parts of the
Sierra Nevada and the northeast region of the state show decreases in runoff above 0.5 SD of
baseline (Figures 20). Note that statistically significant change differs from the SD view under
the future scenarios, particularly in the desert systems, where much of the change while high in
terms of standard deviations is not significant at the 0.05 level (Figure 21).
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Figure 18: The Difference in Annual Runoff (RUN) for HUC 12 Watersheds between 1911-1940 and
1971-2000 (a), Normalized to the Standard Deviation over the 1971-2000 Period (b), and
Statistically Significant Areas of Change, as Measured Using a T Test at a = .05
Significance Level (c)
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Figure 19: Difference in Annual Runoff (RUN) for HUC 12 Watersheds between Future (2071-2100)
and Baseline (1971-2000) for GFDL and PCM A2 and B1 Scenarios
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Figure 20: The Difference in Runoff for HUC 12 Watersheds between Future (2071-2100) and
Baseline (1971-2000), Normalized to the Standard Deviation over the 1971-2000 Period for the
GFDL and PCM A2 and B1 Scenarios
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Figure 21: Statistically Significant Areas of Runoff change between Future (2071-2100) and
Baseline (1971-2000), as Measured Using a T Test at a = .05 Significance Level
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3.1.2.4 Recharge

Annual recharge values increased throughout the mountains and coast of northern California
between 1911-1940 and 1971-2000 (Figure 22), similarly to runoff in distribution, but at a lower
magnitude. Declines in recharge in the southern parts of the state and the Central Valley are at a
similar magnitude. The difference between the time periods relative to the standard deviation
during the baseline time period indicated very small changes outside the normal variability.
The differences between recharge and runoff are more pronounced in the changes between
baseline and the future scenarios (2070-2099) (Figure 23). This difference is exemplified by a
very important characteristic that results from warming, regardless of the direction of change in
precipitation in future projections, and that is the alteration of seasonality, with a shorter wet
season and longer dry season.

For the wet scenarios (PCM model), there are slight increases in recharge in the Central Western
and Great Valley ecoregions (B1 and A2), and the Cascade and Sierra Nevada (B1 only)

(Table 2), but in contrast to runoff there are declines in recharge in the Sierra foothills and the
northwestern part of the state. Because of the compression of the wet season with warming,
(i.e., precipitation starts later in the fall and declines earlier in the spring), in addition to the
earlier onset of springtime snowmelt, there is less time with conditions conducive to recharge.
Even if there is increased precipitation and more excess water for any given month, this favors
the partitioning of excess water into runoff because of the limitation of soil storage. Therefore,
shorter wet seasons translate into reductions in recharge, and amount of runoff is related to if
there is more or less precipitation.

The dry model, GFDL, has declines for both scenarios. The calculation of increases in SD
beyond the baseline SD and T test indicate fairly small changes not present in the baseline
variability, with the exception of the deserts and low-precipitation locations in the wet
scenarios, as with runoff, and the mountains in the dry scenarios (Figure 24 and 25).
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Figure 22: The Difference in Annual Recharge (RCH) for HUC 12 Watersheds between 1911-1940
and 1971-2000 (a), Normalized to the Standard Deviation over the 1971-2000 Period (b), and
Statistically Significant Areas of Change, as Measured Using a T Test at a = .05
Significance Level (c)
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Figure 23: Difference in Annual Recharge (RCH) for HUC 12 Watersheds between the Future
(2071-2100) and Baseline (1971-2000) for the GFDL and PCM A2 and B1 Scenarios
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Figure 24: The Difference in Annual Runoff for HUC 12 Watersheds between Future (2071-2100)
and Baseline (1971-2000), Normalized to the Standard Deviation for the 1971-2000 Period for
GFDL and PCM A2 and B1 Scenarios
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Figure 25: Statistically Significant Areas of Recharge change between Future (2071-2100) and
Baseline (1971-2000), as Measured Using a T Test at a = .05 Significance Level
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3.1.2.5 Climatic Water Deficit

The average climatic water deficit (CWD) for 1971-2000 ranges from 0 to 1,555 mm (Figure 9a).
The northern section of the coast range, along with the Sierra Nevada, has had the lowest CWD,
near or at 0, while the southern half of the central valley and the desert region in the southeast
part of the state have had the highest. Changes in annual CWD between 1911-1940 and 1971-
2000 were generally negative statewide (Figure 26), with slight changes in some southern
California areas. The change at the HUC 12 watershed level, ranges from -151 to +115 mm, with
a mean regional change of -15.9 mm. Looking at this difference relative to the standard
deviation during the baseline 30 years of 1971-2000, none of the watersheds got drier by more
than 1 SD, but several got wetter by more than one SD (Figure 26). Some areas of change
emerge as statistically significant even though the change in at those locations is within 0.5 SD
(Figure 26).

The vast majority of California is projected to have greater CWD, with all ecoregions increasing
on average (Table 2), and with the GFDL projections higher than the PCM projections

(Figure 27, Table 2). The highest increases are seen in the A2 scenarios along the summits and
eastern sides of the Sierra Nevada. The PCM B1 scenario predicts a small decrease in CWD in
small areas of the Central Valley, the northern section of the coast range, and in both the coast
range and eastern part of southern California. The GFDL model does not predict any decreases
in CWD. The change as measured relative to baseline standard deviations (Figure 28) shows
that drying outside of 2 SD will be common in the Sierra Nevada and parts of the northern coast
ranges under the A2 scenarios. These changes are also consistently statistically significant
(Figure 29). It is of interest that this projection occurs for both wet and dry scenarios, which
indicates the robust nature of the CWD application. This variable can be used to show that even
with increased precipitation, the interaction of increases in air temperature (which have high
confidence for all models) with evaporative demand and limits in soil moisture storage will
result in increases in deficit across most landscapes, and drive very different growing
conditions for most plants. This environmental condition, coupled with annual temperature
extremes (driving growing degree days, chilling requirements, and extreme heat and cold
tolerances) are likely to determine the future distribution of vegetation on our landscapes.
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Figure 26: The Difference in Annual Climatic Water Deficit (CWD) for HUC 12 Watersheds between
1911-1940 and 1971-2000 (a), Normalized to the Standard Deviation over the 1971-2000 Period
(b), and Statistically Significant Areas of Change, as Measured Using a T Test at a = .05
Significance Level (c)
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Figure 27: Difference in Climatic Water Deficit (CWD) for HUC 12 Watersheds between Future
(2071-2100) and Baseline (1971-2000) for GFDL and PCM A2 and B1 Scenarios
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Figure 28: The Difference in Climatic Water Deficit for HUC 12 Watersheds between Future (2071-
2100) and Baseline (1971-2000), Normalized to the Standard Deviation over the 1971-2000 Period
for GFDL and PCM A2 and B1 Scenarios

53



Figure 29: Statistically Significant Areas of Climatic Water Deficit change between Future (2071—
2100) and Baseline (1971-2000), as Measured Using a T Test at a = .05 Significance Level
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Finally, fine-scale modeling and analysis permits the influence of elevation and aspect to
appear. This is shown with a comparison of the CWD for the last 30 years of the twentieth
century (Figure 30, left panel) and the projected change from those baseline conditions to
conditions in the last 30 years of the twenty-first century using the GFDL A2 scenario as an
example (Figure 30, right panel shows the amount of change in CWD between future [2071-
2100] and baseline conditions [1971-2000]). In this mountainous region straddling the lower
Tulare basin and the desert of Antelope Valley, the CWD is primarily a function of elevation,
with the desert floor high in deficit, and the mountain tops low in deficit. By the end of the
twenty-first century, modeling shows the greatest change to be (1) in the high mountains in the
west where there is diminished snowpack, and (2) on the south-facing slopes. While slope had
little effect on the distribution of CWD in the baseline period, the changes indicate resilience on
the north-facing slopes where lower energy loads sustain moisture and moderate temperature
as the climate warms.

Figure 30: Current (1971-2000) Average Climatic Water Deficit, and Difference between One
Scenario (GFDL A2) and Baseline
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Section 4: Discussion

The dominant climatic trends that emerged from the BCM runs conducted here include
increases in air temperature that drive reductions in snowpack, earlier snowmelt, and a
compression of the winter season, such that runoff is increased at the expense of recharge under
all precipitation scenarios. The influence of air temperature also drives the increase in climatic
water deficit regardless of precipitation changes, impacting many aspects of ecosystem health,
agricultural demands, and water availability.

The projections of changes in hydrology assume no changes in land use and reflect only
changes in climate. Even without changes in land use there have been large changes distributed
variably across the landscape of California. Increases in precipitation during the baseline time
period were recorded in all ecoregions except the deserts, but the largest changes were a result
of increases in air temperature that have influenced springtime snowmelt. The extent and
thickness of snowpack diminished in all but a few high-elevation locations and has large
implications for the water supply of California, which relies heavily on the slow springtime
snowmelt to sustain the resource through the dry summer months. These climatic changes
during the baseline period affected runoff and recharge differently across the state. There were
primarily increases in runoff, especially in the northern Sierra Nevada, while recharge showed
variable response, with increases in most locations including where snow has diminished, and
decreases on the north and south coast regions.

Climate has also driven changes during the baseline period in CWD, which proved to be most
reliant on air temperature, as the modest increases in precipitation either were held in soils or
became recharge or runoff early in the season, and therefore resulted in increased CWD later in
the season. This is reflected throughout the state with increases in CWD, except for parts of the
San Francisco North Bay, Central Coast, and North Coast regions (which experienced less of an
increase in air temperature) and the northern Central Valley (where the soils are thick enough
to store excess water from precipitation).

Looking across longer time periods, the results show a change in the direction of trend for a
number of important hydrological variables. Historically, precipitation slightly increased, most
strongly in the Sierra Nevada and northern Coast Ranges, while decreasing in the deserts.
Future statewide increases in precipitation continue only under PCM B1 and reverse direction
in the northern Coast Ranges and Modoc Plateau under PCM A2, while the GFDL identifies
drying for nearly the entire study area under both scenarios.

Region-wide precipitation, which has trended wetter historically is the most uncertain variable
in future GCM/emission projections among the scenarios investigated. The PCM models project
wetter conditions (although usually not above the level of current variability) through the
twenty-first century for both emissions scenarios, and the GFDL projects much drier conditions.
There is model consensus on rising air temperatures. Increasing temperatures drive earlier
snowmelt, and also increase the rate of PET, a hydrologically independent variable. Potential
evapotranspiration predominantly showed modest increases over historic time, with a few
anomalies in the high Sierra Nevada. This trend is amplified under all the future scenarios, and
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produces the most significant change measured in this study, with the trend ranging from

1 standard deviation of baseline PET to >2 under the GFDL A2 projections. What affects this
level of increased metabolic demand will have on the many plant species in the region is
undetermined, but water deficit stress well beyond the year-to-year variability currently
encountered could be a way to measure where we would expect physiognomic shifts in
dominant vegetation types.

Changes in runoff correspond to the uncertain direction of change in precipitation projected by
the different models. Historic trends of increasing runoff are projected to increase under the wet
PCM scenarios, especially in the mountainous regions, and to decrease under the dry GFDL
scenarios. However, the change in runoff is mostly under 0.5 SD for both wetter and drier. The
exception is in desert regions, where increases in runoff are projected to be far above current
variability, but this is because there are currently very low levels of runoff, and the actual
magnitude of change projected is low. It is interesting to consider that while warming is
generally expected to increase spring runoff, and to make hydrological systems more “flashy”
or prone to floods, the results here suggest that for many places, on a yearly basis, the total
amount of future runoff is similar to current amounts. Note also that the increase in PET
reduces the amount of excess water available for runoff.

Recharge, which over historic time has increased in the Sierras and northern California, while
declining in the Central Valley and most of southern California, does not follow the direction of
change in precipitation, due to the compression of the wet season and the dependence of
recharge processes on soil moisture storage and bedrock permeability. Our projections indicate
that if there is excess water afforded by increases in precipitation, it will mostly become runoff
rather than recharge. Recharge is dominant during the slow snowmelt season when the soil
drains slowly and provides the time for recharge. With this season becoming shorter in the
future, this process becomes less significant under all scenarios.

Finally, CWD, which lessened in some areas historically, becomes much more pronounced
under all future projections, with the Sierra Nevada mountains and Modoc plateau
experiencing the most consistent impacts across scenarios. This trend exemplifies the increase in
PET in all scenarios due to air temperature, and the limitation of the soils to hold additional
water where, or if, precipitation increases. Thus, driving forces for species distributions,
agricultural demands, and other processes or needs that rely on seasonal soil moisture threaten
to impose much higher stress.

These results suggest that while warming continues from historic to future in a positive trend,
that many of the hydrologic variables will pass through some tipping point, and that the
conditions in California may become much more challenging than baseline or historic trends
suggest for the future. For example, mountainous regions that have been somewhat buffered
from hydrologic impacts may experience more pronounced impacts related to water shortages
and CWD. Such impacts may include tree mortality due to drought, increased pathogen
outbreaks, and increased fire risk—all of which may lead to significant changes in timberland
species composition and structure, including outright conversion to other vegetation types. The
future suitable conditions of the major agricultural regions, the Central Valley, Salinas Valley,
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and South Coast ranges will be highly dependent on whether the future plays out more along
the PCM or the GFDL projections. Under the PCM projections, while CWD does increase in
most of these areas, the increase is typically less than half a standard deviation of baseline
variability. Climate water deficit increases are much greater under GFDL projections, and under
these conditions farmers will likely need far more adaptive measures to address the increasing
soil aridity. For natural ecosystems, the Sierra Nevada appear to be under the greatest increased
stress from CWD, under all four projections, and the coastal ranges experience varying levels of
CWD increase, with PCM A2 the lowest and GFDL A2 producing similar levels of CWD as in
the Sierra Nevada. These increases are likely to have both physiological impacts to plant
species, and to change the background level of fire return in these ecosystems.

4.1 BCM Performance

The use of streamgage data to calibrate the BCM to accumulated upstream runoff and recharge
permits an assessment of the relationship between recharge and runoff on a spatial and
temporal basis. Similar types of model calibration have been performed for the solar radiation
and evapotranspiration components (Flint and Flint 2007). Soil moisture and climatic water
deficit could be field verified as well through spatial and temporal sampling of plant
evapotranspiration rates (e.g., Ryu et al. 2008) and by measures of soil moisture (e.g., Mittelbach
et al. 2011). In this study, we assembled runoff data from 138 streamgages, which permits a
rough assessment of how well the BCM model performs at integrating all the hydrologic
balance components.

The application of the BCM to assess unimpaired hydrologic conditions for California relies on
the calibration to geology and the relative success across the state with which estimated basin
discharge corresponds to measured streamflow. The application of this mechanistic model
permits a look at how conditions have changed over time and provides an illustration of where
in the region basins are more or less sensitive to changes in climate, where runoff or recharge
processes are dominant, and where moisture stresses to the landscape are likely to be more or
less profound. Generally basins with the least impairments had the best calibrations, with the
exception of basins in the volcanics in the upper Klamath River basin.

Generally calibration and performance results for the BCM were satisfactory in basins
throughout the state with both unimpaired and impaired (including urban and agriculture)
basins providing close matches of estimated basin discharge to measured streamflow. Basins
with the lowest BCM performance scores contained unaccounted-for land uses, such as
agricultural or municipal diversions or return flows, or water impoundments such as reservoirs.
These results provide reasonable confidence in the spatially distributed estimates of recharge,
runoff, and climatic water deficit throughout the entire state, as well as for ungaged basins.
However, runoff in the BCM is not routed, and basin discharge requires post-processing using
measured streamflow to determine the relative contributions of recharge and runoff in a basin
to gains and losses in streamflow. Once established, these components can be used to
extrapolate basin discharge through time, given no changes in impairments. Uncertainties in
calibration do not affect estimates of CWD, as this calculation does not rely on the bedrock
permeability used to partition the excess water into recharge and runoff. Soil water conditions
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are a function of soil properties, available water from precipitation and evapotranspiration.
Therefore, the BCM calculation of CWD, PET minus actual evapotranspiration (Stephenson
1998), reflects the uncertainties inherent in the climate data, in the soil properties from soil
mapping and PET.

4.2 Model Utility and Data Limitations

The BCM is a physically based, deterministic model that provides information at a fine scale on
the basis of downscaled climate input data and the most detailed maps available to represent
other landscape variables used. These techniques have been tested to illustrate accuracy in
representing the larger-scale climate datasets (Flint and Flint 2012). The calculation of potential
evapotranspiration has been rigorously developed and calibrated to measured data throughout
California (Flint and Flint 2007). Applications of the BCM to determine hydrologic response, as
measured by discharge to climate, rely on maps of soil type and estimates of properties
(SSURGO; NRCS, http://soils.usda.gov/survey/geography/ssurgo/) and geologic maps from
which bedrock permeability is estimated. Soil properties are maintained static, but bedrock
permeability is adjusted to change the ratio of recharge to runoff and improve the comparison
of estimated total basin discharge to measured streamflow. If a geologic type is mapped as one
type over a broad area of the state, when bedrock permeability is adjusted to improve
calibration in one location, the relative proportions of recharge and runoff change

correspondingly across the domain in basins with similar geologic types. Since discharge is
derived from runoff and recharge, a post-processing calibration/validation may be conducted,
as was the case in this study.

A useful application of the BCM beyond the estimates of spatially distributed recharge and
runoff would be to estimate basin discharge at ungaged basins. To this end, there were attempts
made to correlate the basin calibration parameters that were used to adjust the basin discharge
to match measured streamflow in gaged basins (Appendix C) to landscape variables. The intent
was to enable the extrapolation of discharge estimates to ungaged basins on the basis of
mapped physical characteristics such as geology, soil properties, slope, basin area, or aridity.
The concept here is that parameters that adjusted the baseflow to be high in basins with high
bedrock permeability, for example, might have a correlation across multiple basins. However,
none of these showed a significant relationship with model calibration parameters across all
calibration and validations in California. Possible reasons for the lack of relationship include
potential errors in the soils or geology maps, or in the PRISM climate data, or due to human
activities that are affecting basin hydrology at the watershed scale. Since the BCM is a
mechanistic model, driven by a series of physically based assumptions, we argue that the model
output is of value for regional comparisons of watersheds, even in the absence of independent
validation for ungaged basins. If we assume that the properties and climate are correct, the
BCM hydrologic outputs are based on properties that are spatially distributed throughout the
study area, and the calculations performed consistently across all basins, providing a level of
confidence when using the hydrologic results for regional cross-comparisons of basins.
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Some of the sources of error are well known to geographers. Soils maps are particularly prone
to error, since accurate measures of soil depth are difficult to obtain, and currently unobtainable
for large areas. The national State Soil Geographic (STATSGO) dataset smoothes out landscape
features and generally disregards topographic controls on soil depth. County-level soils maps
(SSURGO) are currently being developed for the state for application to the BCM, which will
provide much better accuracy in BCM output, particularly for CWD. Improving measurements
of soil depth generally emerged as one of the most important data development agendas as a
result of this study.

Human activities are extensive in California, and likely have impacts in nearly every basin.
These activities that can affect the hydrologic cycle at the watershed scale include small
impoundments, direct pumping from streams for urban or agricultural use, construction of
impermeable surfaces, and changes to the natural land cover. These can affect variously the
partitioning of input PPT to different pathways in the hydrological cycle, and also affect the
actual evapotranspiration (AET) and PET calculated as part of the model. We were not able to
make detailed efforts on assessing the influence of human activities on the overall model
accuracy, and feel this would be a suitable agenda for future research, particularly for basins
with several gages that are placed below and above areas of human disturbance.

The historical climate used for this analysis, PRISM, relies on meteorological station data, and
empirical relations of numerous factors affecting the local expression of climate on the
landscape, including distance from the ocean, extent of mountain ranges, and other features, to
interpolate among data locations. This dataset is therefore a model, relying on data, and does
not strictly honor the measured data in most locations. However, the interpolated data likely
reflects better estimates of climate in locations without measurements than nearby station data
at different elevations or topographic settings, and is considered a useful and competent long-
term dataset.

The estimate of spatially distributed runoff does not equal basin discharge as measured at a
streamgage without post-processing to determine the components of runoff and recharge that
contribute to stream channel gains and losses, which must be done using some measured data
for a given basin. The resultant parameters corresponding to the gains and losses generally
reflect climatic conditions and geologic setting, but at the scale of hydrologic California have not
been determined to a degree that allows for the direct extrapolation of basin discharge to all
ungaged basins. The spatial distribution of runoff and recharge, however, provide relative
differences over the region and indicate the differences in sensitivity of basins to changes in
climate. The estimate of changes in soil moisture and CWD do not rely on interpretation of
bedrock permeability, and uncertainties correspond more closely with those of the mapped soil
properties and climate data.

Because the BCM model outputs are calculated on a grid-cell basis, results can be summarized
across landscapes using summary units of any size of interest such as watersheds, ecoregions,
or political boundaries. The ability to spatially project hydrological model outputs permits the
cross-comparison of these landscape delineations, with mapped outputs of interest to various
fields of research (e.g., Appendix F). The discharge and groundwater outputs can inform water
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management for storage and human consumption, and anadromous fisheries. Soil moisture and
climatic water deficit are of interest for tracking suitability of rain-fed agriculture and for
assessment of suitability of natural environments for component plants and animals.

The ability to calculate hydrological outputs using a transparent, mechanistic approach, and at
fine spatial scales, permits a new set of predictor variables to be used in the spatial projection of
suitable plant ranges or habitats (e.g., Williams et al. 2009). This is a particularly important
opportunity for ecologists and conservation biologists because species distribution models are
one the primary methods of evaluating the susceptibility of species to climate change (e.g.,
Guisan and Thuiller 2005; Lorrie et al. 2009). One of the most important variables that BCM
calculates is climatic water deficit (Stephenson 1998). Natural resource managers and field
ecologists are particularly interested in this variable, as it integrates site conditions with
temperature and moisture, and is therefore a factor that plants may respond to more directly
than climate variables alone, particularly in regions with pronounced seasons. The strength of
the BCM in portraying CWD is that different watersheds can be compared by identifying the
area-weighted mean value. Therefore relative differences across hydrologic California are
comparable.

61



Section 5: Summary and Conclusions

5.1 Development of Hydroclimatic Variables for Climate
Assessments

The downscaling of historical climate data and future climate scenarios for application to the
BCM to calculate hydrologic response to climate change has provided a dataset that is both rich
in its regional representation of climatic and hydrologic trends, but also spatially detailed to
provide fine-scale examples of local impacts of climate change on the landscape.

Landscape responses to climate change are moderated by locations with lower energy loads,
such as north-facing hillslopes or coastal regions with frequent cloud cover. Soil also amplifies
or moderates the hydrologic response for the landscape to climate change, depending on
whether soils are thin and excess water is lost to runoff or recharge, or if they are thick and can
maintain moisture longer into the season. Mountainous regions seasonally occupied by
snowpack are quite sensitive to climate change, as the timing of snowmelt is enhanced by
warming, thus changing the length of the wet season and extending the dry season for all
regions downstream relying on snowpack for public and agricultural use.

The BCM, using the best map data available, still shows that we have not captured all the
details that drive individual watershed dynamics. However, for comparative purposes across a
large number of watersheds and ecoregions, the relative consistency of the model permits
informative interpretations. This is, in essence, very similar to the way in which GCMs
themselves run, in that they provide a platform for intercomparison of regions even while they
may be more or less accurate when compared to ground-based measurements. In this regard,
then, the next challenge for modelers of these physical (and biophysical) processes is to
determine how to incorporate the next-finer scale of detail. Basin Characterization Model
output maps indicate where on the landscape changes in the hydrologic cycle occur. If
discharge or recharge boundary conditions are needed at the watershed-scale basin, then this
study suggests that some local calibration is necessary. However, if the basins are purely
unimpaired, then nearby or adjacent basin calibration is likely to suffice.

The consistent patterns offered by the BCM for a variety of hydroclimatic variables that relate to
ecological processes to fine spatial scales make the model output of particular interest to
landscape ecologists, and to those interested in modeling the biogeographic response of species
and vegetation types to future changes in climate. Part of the interest derives from the fact that
future moisture conditions are much more difficult to project than future temperature; a fact
that emerges when comparing the outputs of future GCMs for temperature and precipitation,
where there is much higher agreement between models for temperature. Having a mechanistic
model that captures the dynamics of the water that is predicted permits a better estimation of
hydrological conditions under varying scenarios, which in turn can provide a view to the range
of potential impacts to water available for natural processes and for human uses; particularly
rain-fed agriculture.
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5.2 Model Refinements and Future Directions

Because of the modular nature of the Basin Characterization Model, it is possible to make two
types of improvements. First, any particular module’s calculations may be updated and
improved. An example would be if PET values for different vegetation types could be
calculated, these could be applied using an existing vegetation map to render more accuracy in
the plant-driven parts of the model. Second, input data maps may be updated and improved.

Refinements are currently planned to improve the accuracy of the spatially distributed outputs,
and improve confidence in estimates in ungaged basins. On the basis of a comparison the
PRISM 4 km-resolution climate data used in this study, and the subsequently available PRISM
800 m-resolution climate data (Stern et al. 2011), map-based improvements for the next version
of BCM projections include the incorporation of the PRISM 800 m transient climate dataset for
historical BCM analyses. The 800 m transient data provides slight improvements in
precipitation estimates for the state, particularly at high elevations dominated by snowpack. For
future projections, a broader suite of GCM and scenarios could be developed, while awaiting
the next iteration of projections from the IPCC.

To improve the snow-driven module in BCM, calibration of the snow accumulation and
snowmelt calculations will be done to match measured snow-water equivalent at over 300 snow
sensors and snow courses, and maps of persistent glaciers will also be included. The use of the
800 m PRISM climate data also contributes to a marked improvement in snowpack in some
locations. SSURGO soils maps are far more detailed and accurate than STATSGO datasets and
reflect topographic controls on soil properties. Therefore SSURGO soils maps are being
developed statewide for model application. Geologic maps and local calibrations are being
refined in those locations where geologic types are not well represented by the calibration
basins, such as the volcanics of the Modoc Plateau and the upper Klamath River basin.
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Glossary

AET
AZMET
BCM
CALSIM
CIMIS
CMIP3
CWD
GCM
GFDL
GIDS
HUC
IPCC
ISBA-TRIP

MODIS
MPa
NCAR
NOAA
NRCS
NREL
NSS
PCM
PET
PIER
PRMS
RCH

SD
SSURGO
STATSGO
V&A

ucC
UNEP
UNESCO
U.S. DOE
USGS
VIC
WCRP
WEAP
WEHY

Actual Evapotranspiration

Arizona Meteorological Network

Basin Characterization Model

A Water Resources Simulation Model

California Irrigation Management Information System
Coupled Model Intercomparison Project Phase 3
Climate Water Deficit

Global Climate Model

Geophysical Fluid Dynamics Laboratory
Gradient-Inverse-Distance-Squared

USGS hydrologic unit code

Intergovernmental Panel on Climate Change
Interactions between Soil, Biosphere, and Atmosphere-Total Runoff
Integrating Pathways

Moderate Resolution Imaging Spectroradiometer
megapascals

National Center for Atmospheric Research

National Oceanic and Atmospheric Administration
Natural Resources Conservation Service

National Renewable Energy Laboratory

Nash-Sutcliffe efficiency statistic

Parallel Climate Model

potential evapotranspiration equations

Public Interest Energy Research

Precipitation-Runoff Modeling System

recharge

standard deviation

County-level soils maps

State Soil Geographic dataset

Vulnerability and Adaptation

University of California

United Nations Environmental Programme

United Nations Educational, Scientific and Cultural Organization
U.S. Department of Energy

U.S. Geological Survey

Variable Infiltration Capacity model

World Climate Research Programme

Water Evaluation And Planning

Watershed Environmental Hydrology
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Appendix A: Input Files and Output Files for the Basin
Characterization Model

The following graphic (Figure Al) shows the needed input variables and datasets to run the
different modules of the BCM.

Figure Al. Flow Chart for the Basin Characterization Model Showing Needed Input Variables
and Datasets
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Appendix B: Description of Input and Output Variables
for the Basin Characterization Model

Table B1. The input and output variables used and produced by modules of the BCM.

Creation
Variable Code Units | Equation/model Description
Method 1 P
Maximum air degree . The maximum monthly air
tmax | downscaled & Model input y
temperature C temperature
Minimum ai . degree . The minimum monthly air
M A jin | downscaled & Model input i yal
temperature C temperature
. Total monthly precipitation
Precipitation | ppt downscaled | mm Model input . y precip
(rain or snow)
Potential Modeled/ Total amount of water that can
evapotrans- | pet pre- mm Model input evaporate from ground surface
piration processed or be transpired by plants
Precipitation if tmi
Snowfall snow | BCM mm recipriation It tift Amount of snow that fell
below 1.5 degrees C
Prior month pck + Amount of snow that
Snowpack pck BCM mm P
snow — subl - melt accumulated per month
Amount of snow lost to
. ) Calculated, applied to . .
Sublimation | subl | BCM mm K pp sublimation (snow to water
P vapor)
Calculated, lied to | Amount of snow that melted
Snowmelt melt | BCM mm act appH Lt of snow Hha
pck (snow to liquid water)
Amount of water remaining in
system, assuming potential
Excess water | exc BCM mm ppt — pet evapotranspiration consumes
maximum amount of water,
for positive months only
Soil water t+ melt —aet—rch | Average amount of water
W stor BCM mm PP v g Lo
storage - run stored in the soil
Changes in stor Amount of water that
Actual - . .
between field evaporates and is transpired
evapotrans- | aet BCM mm . - . . S
iration capacity and wilting | that is available in soil water
p point storage above wilting point
Climatic Annual evaporative demand
. cwd | BCM mm pet-aet poTa’
water deficit that exceeds available water
Amount of water that
Amount of water that becomes
Runoff run BCM mm exceeds total stor +
. runoff
rejected recharge
Amount of water
exceeding field
xeeedt &1 Amount of water that
Recharge rch BCM mm capacity that enters
penetrates below the root zone
bedrock at the rate of
bedrock permeability
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Appendix C: Streamgages Used for Study Basins in California for the Basin

Characterization Model, Including Calibration Parameters, and Goodness-

of-fit Statistics.

Table C1. This Table Lists All the Streamgages Used in the Calibration and Validation Analyses. A total of 139 gages were used,
presented with their calibration parameters and goodness of fit statistics. There are 68 calibration, and 71 validation gages in the study.

Calibration Parameters

Goodness-of-fit Statistics

Latitude Longitude  Years Nash-
NWIS (decimal  (decimal of Jepson Area  Baseflow Runoff Recharge Mthly Yrly Sutcliffe % %
station ID  degree) degree) record ecoregion km2 exponent scaler scaler r2 r2 Efficiency Urban  Agriculture
Calibration Basins
Central
Aptos C A Aptos Ca 11159700 36.9763 -121.9035 14  Western CA 12 0.960 0.20 0.50 0.79 0.78 0.69 21.4% 0.1%
Central
Aptos C Nr Aptos Ca 11159690 37.0016 -121.9071 14 Western CA 10 0.970 0.40 0.50 0.70 0.85 0.52 0.3% 0.3%
Arroyo Corte Madera D Pres Central
A Mill Valley Ca 11460100 37.8971 -122.5372 20 Western CA 5 0.980 0.90 0.80 0.87 0.95 0.87 53.3% 0.0%
Central
Arroyo Hondo Nr San Jose Ca 11173200 37.4615 -121.7705 18 Western CA 77 0.960 1.00 0.90 0.79 0.87 0.79 0.3% 0.0%
Arroyo Valle Bl Lang Cn Nr Central
Livermore Ca 11176400 37.5613 -121.6849 36 Western CA 130 0.950 0.70 0.30 0.70 0.81 0.68 0.5% 1.0%
Central
Bear C A Boulder C Ca 11160060 37.1277 -122.1180 15 Western CA 16 0.950 0.60 0.50 0.69 0.92 0.62 4.1% 0.6%
Central
Boulder C At Boulder Creek Ca 11160070 37.1266 -122.1238 16 Western CA 11 0.960 0.70 0.70 0.86 0.96 0.83 12.4% 0.0%
Central
Corralitos C A Freedom Ca 11159200 36.9394 -121.7716 43  Western CA 28 0.910 0.30 0.40 0.71 0.85 0.67 18.0% 26.7%
Central
Corralitos C Nr Corralitos Ca 11159150 37.0055 -121.8091 15 Western CA 11 0.940 0.65 0.40 0.66 0.87 0.66 0.3% 1.5%
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Coyote C Nr Gilroy Ca

Cull C Ab Cull C Res Nr Castro
Valley Ca

Laguna C Nr Davenport Ca
Lagunitas C A Sp Taylor State
Pk Ca

Little Pine C Nr Alamo Ca
Majors C Nr Santa Cruz Ca
Marsh C Nr Byron Ca

Novato C A Novato Ca
Pilarcitos C A Half Moon Bay
Ca

Pinole C A Pinole Ca

San Antonio C Nr Petaluma Ca
San Benito R Nr Willow Creek
School Ca

San Lorenzo R A Big Trees Ca
San Lorenzo R A Santa Cruz Ca
San Lorenzo R Nr Boulder C Ca
San Ramon C A San Ramon Ca
San Vicente C Nr Davenport Ca
Saratoga C A Saratoga Ca
Scott C Ab Little C Nr Davenport
Ca

Soquel C A Soquel Ca

Uvas C Ab Uvas Res Nr Morgan
Hill Ca

11169800

11180960

11161590

11460400

11183700

11161570

11337500

11459500

11162630

11182100

11459300

11156500

11160500

11161000

11160020

11182500

11161800

11169500

11161900

11160000

11153900

37.0777

37.7176

37.0255

38.0268

37.8848

36.9985

37.8732

38.1076

37.4665

37.9723

38.1823

36.6094

37.0443

36.9907

37.2066

37.7729

37.0552

37.2543

37.0641

36.9913

37.0927

-121.4954

-122.0555

-122.1321

-122.7375

-121.9788

-122.1224

-121.7282

-122.5811

-122.4352

-122.2474

-122.6175

-121.2040

-122.0735

-122.0330

-122.1460

-121.9958

-122.1833

-122.0405

-122.2305

-121.9569

-121.7193

22

21

17

15

31

53

33

39

60

63

20

24

47

16

66

15

49

21

Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA
Central
Western CA

75

109

43

18

27

10

29

249

106

115

25

40

21

0.970

0.940

0.970

0.981

0.930

0.960

0.940

0.910

0.950

0.950

0.930

0.960

0.950

0.940

0.960

0.940

0.970

0.940

0.960

0.970

0.950

1.00

0.90

0.40

0.60

0.80

0.40

0.75

0.80

0.60

0.80

0.80

0.30

0.10

0.10

0.50

0.90

0.35

0.70

0.65

0.93

0.75

0.30

0.60

0.60

0.90

0.20

0.70

0.40

0.30

0.60

0.55

0.50

0.40

0.20

0.20

0.60
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Central

Wb Soquel C Nr Soquel Ca 11159800 37.0513 -121.9402 14 Western CA 12 0.960 0.50 0.70 0.85 0.89 0.81 7.0% 3.3%
Central

Zayante C A Zayante Ca 11160300 37.0860 -122.0480 35 Western CA 11 0.950 0.60 0.60 0.77 0.91 0.71 4.7% 0.0%
North

Austin C Nr Cazadero Ca 11467200 38.5012 -123.0703 8 Western CA 63 0.960 0.90 0.80 0.89 0.94 0.88 1.2% 0.0%
North

Bear C Nr Rumsey Ca 11451720 38.9448 -122.3472 25 Western CA 100 0.950 0.80 0.40 0.85 0.91 0.85 0.2% 3.3%
North 43.0

Brush C A Santa Rosa CA 11466065 38.4550 -122.6800 5 Western CA 10 0.960 1.00 1.00 0.97 0.86 0.75 % 2.4%
North

Dry C Nr Cloverdale Ca 11464500 38.7495 -123.0933 39 Western CA 88 0.940 0.60 0.60 0.92 0.96 0.92 0.0% 0.0%
North

Dry C Nr Napa Ca 11457000 38.3562 -122.3661 16 Western CA 17 0.940 0.90 0.60 0.74 0.93 0.74 0.1% 5.7%
North

Dry C Nr Yorkville Ca 11464400 38.7890 -123.1567 10 Western CA 56 0.940 0.90 0.80 0.91 0.99 091 0.1% 0.7%
North

Ef Russian R Nr Ukiah Ca 11462000 39.1973 -123.1886 49 Western CA 105 0.940 1.00 0.80 0.60 0.91 0.58 1.1% 9.0%
North

Feliz C Nr Hopland Ca 11462700 38.9720 -123.1439 8 Western CA 31 0.960 1.00 0.80 0.88 0.98 0.83 0.0% 1.1%
North

Franz C Nr Kellogg Ca 11463940 38.6082 -122.6958 5 Western CA 16 0.940 0.90 1.00 0.88 0.99 0.88 0.2% 13.3%
North

Maacama C Nr Kellogg Ca 11463900 38.6401 -122.7647 21 Western CA 43 0.950 0.90 0.60 0.90 0.96 0.90 0.2% 5.9%

Mark West C NR Mirabel North 40.4

Heights CA 11466800 38.4940 -122.8530 5 Western CA 251 0.920 0.20 0.70 0.84 1.00 0.85 % 25.3%
North

Mark West C NR Windsor CA 11465500 38.5090 -122.7700 2 Western CA 43 0.940 0.70 0.60 0.95 1.00 0.10 6.6% 1.1%
North 23.5

Matanzas C A Santa Rosa CA 11466170 38.4390 -122.7020 7 Western CA 21 0.930 0.80 0.90 0.88 0.00 0.81 % 3.3%
North 10.2

Milliken C Nr Napa 11458100 38.3384 -122.2705 13 Western CA 17 0.970 1.00 0.70 0.90 0.95 0.85 % 5.6%
North 10.4

Napa R Nr St Helena Ca 11456000 38.4976 -122.4291 60 Western CA 81 0.930 0.40 0.90 0.85 0.95 0.85 % 21.6%
North

Nf Cache C Nr Lower Lake Ca 11451500 39.0190 -122.5700 51 Western CA 197 0.930 0.35 0.60 0.63 0.74 0.59 0.9% 0.4%
North

Pena C Nr Geyserville Ca 11465150 38.7004 -122.9733 12 Western CA 22 0.930 1.00 0.90 0.87 0.97 0.86 0.0% 0.7%
North

Redwood C Nr Napa Ca 11458200 38.3176 -122.3452 15 Western CA 10 0.940 0.90 0.70 0.83 0.89 0.82 1.6% 26.1%

Russian R Nr Redwood Valley North

Ca 11460940 39.3192  -123.2245 5 Western CA 14 0.960 1.00 0.80 0.93 0.98 0.90 0.4% 1.2%
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North

Russian R Nr Ukiah Ca 11461000 39.1953 -123.1961 49 Western CA 100 0.960 0.90 0.40 0.90 0.93 0.89 4.1% 8.7%
North
Sonoma C A Agua Caliente Ca 11458500 38.3232  -122.4955 27 Western CA 58 0.950 0.90 0.60 0.86 0.94 0.86 7.1% 17.3%
North
Warm Springs C Nr Asti Ca 11464860 38.6959 -123.0978 10 Western CA 12 0.950 1.00 0.90 0.90 1.00 0.89 0.0% 0.0%
Big C Ab Pine Flat Res Nr Sierra
Trimmer Ca 11220000 36.9163 -119.2455 20 Nevada 70 0.960 0.90 1.00 0.86 0.93 0.86 0.0% 0.0%
Big C Ab Whites Gulch Nr Sierra
Groveland Ca 11284400 37.8418 -120.1859 31 Nevada 16 0.920 0.80 0.50 0.76 0.85 0.76  0.3% 0.0%
Sierra
Kings R Ab Nf Nr Trimmer Ca 11213500 36.8632 -119.1252 53 Nevada 952 0.950 1.00 1.00 0.47 0.92 0.39 0.0% 0.0%
Merced R A Happy Isles Bridge Sierra
Nr Yosemite Ca 11264500 37.7315 -119.5598 84 Nevada 181 0.940 1.00 0.80 0.67 0.92 0.57 0.0% 0.0%
Merced R A Pohono Bridge Nr Sierra
Yosemite Ca 11266500 37.7168 -119.6673 83 Nevada 321 0.940 0.40 0.70 0.65 0.92 0.28 0.2% 0.0%
Sierra
Nf Tuolumne R Nr Long Barn Ca 11284700 38.0987 -120.1007 24 Nevada 23 0.940 0.90 0.70 0.81 0.94 0.78 2.9% 0.0%
Sierra
Nf Willow C Nr Sugar Pine Ca 11242400 37.3977 -119.5672 34 Nevada 17 0.960 0.70 0.70 0.57 0.78 041 0.0% 0.0%
Sierra
Sf Kaweah R A Three Rivers Ca 11210100 36.4166 -118.9152 32 Nevada 87 0.930 0.90 0.60 0.70 0.93 0.68 0.1% 0.0%
Southwester
Guejito C Nr San Pasqual 11027000 33.1159 -116.9539 35 nCA 23 0.930 0.70 0.50 0.67 0.71 0.17 0.4% 2.1%
Los Penasquitos C Bl Poway C Southwester 48.2
Nr Poway Ca 11023330 32.9493 -117.0709 24 nCA 31 0.980 1.00 1.00 0.81 0.88 0.80 % 2.3%
San Diego R A Fashion Valley Southwester 72.6
At San Diego Ca 11023000 32.7651 -117.1695 18 nCA 429 0.960 0.20 0.80 0.84 0.95 0.83 % 0.0%
San Diego R A Mast Rd Nr Southwester 19.6
Santee Ca 11022480 32.8404 -117.0267 86 nCA 368 0.960 0.25 0.75 0.79 0.86 0.79 % 1.7%
Southwester 24.1
Santa Maria C Nr Ramona Ca 11028500 33.0523 -116.9464 61 nCA 58 0.960 1.00 0.50 0.79 0.84 0.65 % 17.5%
Southwester
Santa Ysabel C Nr Ramona Ca 11025500 33.1070 -116.8670 68 nCA 112 0.950 0.40 0.40 0.55 0.70 092 0.6% 0.8%
mean 77 0.949 0.70 0.63 0.76 0.88 0.71 8.5% 3.4%
unimpaire
d only 0.950 0.87 0.83 0.73 0.92 0.67 0% 0%

Validation basins
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Calibration Parameters

Goodness-of-fit Statistics

Latitud
e Nash-
(decima  Longitude  Years Baseflow Sutcliffe %
NWIS | (decimal of Jepson Area  exponen Runoff Recharge Mthly Yrly Efficienc  Urba %
station ID  degree) degree) record ecoregion km?2 t scaler scaler r2 r2 v n Agriculture
Cascade
Antelope C Nr Tennant Ca 11489500 41.5464 -121.9194 27 Ranges 19 0.970 0.70 0.50 0.73 0.87 0.72  0.0% 0.0%
Cascade
Cottonwood C A Hornbrook Ca 11516600 41.9181 -122.5648 7 Ranges 90 0.940 1.00 0.70 0.53 0.87 0.51 1.5% 0.6%
Deer C Bl Slate C Nr Deer Creek Cascade
Meadows Ca 11382550 40.2337 -121.4661 9 Ranges 69 0.979 0.70 0.30 0.23 0.85 0.07 0.1% 0.0%
Cascade
Hat C Nr Hat Creek Ca 11355500 40.6864 -121.4258 68 Ranges 162 0.981 0.20 0.30 0.31 0.31 0.31 0.0% 0.2%
Cascade
Little Shasta R Nr Montague Ca 11516900 41.7528 -122.3017 21 Ranges 48 0.970 0.25 0.35 0.46 0.55 040 0.0% 0.0%
Cascade
Pine C Nr Susanville Ca 10359300 40.6648 -120.7924 20 Ranges 226 0.940 0.35 0.20 0.22 0.72 0.55 0.0% 0.0%
Cascade
Squaw C Ab Shasta Lk Ca 11365500 40.8567 -122.0878 22 Ranges 64 0.970 1.00 0.70 0.78 0.96 0.59 0.0% 0.0%
Central
Alamo C Nr Nipomo Ca 11137400 35.0486 -120.3034 20 Western CA 83 0.900 0.60 0.50 0.57 0.71 0.50 0.0% 0.0%
Central
Arroyo Seco Nr Greenfield Ca 11151870 36.2374 -121.4826 25 Western CA 113 0.980 1.00 1.00 0.78 0.90 0.70 0.0% 0.0%
Central
Big Sur R Nr Big Sur Ca 11143000 36.2458 -121.7744 50 Western CA 47 0.983 1.00 1.00 0.68 0.90 0.63 0.1% 0.0%
Central
Cantua C Nr Cantua Creek Ca 11253310 36.4021 -120.4345 33 Western CA 46 0.930 0.38 0.20 0.53 0.78 0.52 0.2% 0.0%
Central
Estrella R Nr Estrella Ca 11148500 35.7172 -120.6412 42  Western CA 922 0.930 0.35 0.40 0.67 0.80 0.56 0.3% 3.1%
Central
Pescadero C Nr Pescadero Ca 11162500 37.2607 -122.3299 49 Western CA 46 0.950 0.90 0.70 0.79 0.93 0.79 1.1% 0.1%
Central
Sisquoc R Nr Sisquoc Ca 11138500 34.8397 -120.1692 57 Western CA 281 0.960 0.40 0.30 0.62 0.75 0.07 0.0% 0.0%
Modoc
Sf Pit R Nr Likely Ca 11345500 41.2306 -120.4382 71 Plateau 247 0.978 0.60 0.40 0.59 0.67 0.55 0.0% 0.2%
Sprague River Near Beatty Modoc
Oreg. 11497500 42.4470 -121.2397 38 Plateau 513 0.997 1.00 1.00 0.57 0.81 0.56 0.0% 0.0%
Sprague River Near Chiloquin Modoc
Oreg. 11501000 42.5844 -121.8509 79 Plateau 1580 0.996 0.10 0.40 0.49 0.69 0.33 0.0% 0.0%
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Sycan River Below Snake Creek Modoc
Nr Beatty Oreg. 11499100 42.4859 -121.2800 13  Plateau 568 0.980 0.60 1.00 0.59 0.89 0.59 0.0% 0.0%
Modoc
Sycan River Near Beatty Oreg. 11499000 42.5497 -121.3189 9 Plateau 540 0.987 0.85 0.80 0.58 0.74 0.50 0.0% 0.0%
Williamson River Below Sheep Modoc
Creek Nr Lenz Oreg. 11491400 42.9114 -121.4778 13 Plateau 205 0.997 0.20 0.55 0.47 0.89 0.47 0.0% 0.0%
Williamson River Near Klamath Modoc
Agency Oreg. 11493500 42.7400 -121.8356 44  Plateau 1290 0.960 0.00 0.45 0.01 0.53 0.34 0.0% 0.0%
Wood River At Fort Klamath Modoc
Oreg. 11504000 42.6997 -121.9856 18 Plateau 90 0.995 0.00 0.58 0.00 0.00 0.50 0.0% 0.0%
Northwest
Beaver C Nr Klamath R Ca 11517800 41.8942 -122.8245 5 CA 106 0.970 0.50 0.60 0.84 0.97 0.84 0.0% 0.0%
Northwest
Blue C Nr Klamath Ca 11530300 41.4497 -123.8968 13 CA 120 0.970 0.70 0.80 0.89 0.96 0.88 0.0% 0.0%
Northwest
Bluff C Nr Weitchpec Ca 11523050 41.2400 -123.6593 7 CA 75 0.970 1.00 1.00 0.81 0.60 0.80 0.1% 0.0%
Northwest
Elk C Nr Happy Camp Ca 11522200 41.7430 -123.3568 8 CA 90 0.970 0.30 0.50 0.65 0.96 0.83 0.0% 0.0%
Grass Valley C A Fawn Lodge Northwest
Nr Lewiston Ca 11525600 40.6761 -122.8317 24 CA 31 0.970 0.30 0.70 0.81 0.94 0.80 0.1% 0.0%
Northwest
Hayfork C Nr Hyampom Ca 11528500 40.6258 -123.4359 21 CA 378 0.950 0.50 0.90 0.77 0.94 0.67 0.4% 0.2%
Northwest
Indian C Nr Happy Camp Ca 11521500 41.8350 -123.3843 43 CA 120 0.970 0.60 0.70 0.77 0.92 0.75 0.1% 0.0%
Northwest
Mattole R Nr Petrolia Ca 11469000 40.3130 -124.2848 51 CA 245 0.970 1.00 1.00 0.93 0.92 0.82 0.2% 0.2%
Northwest
Mf Cottonwood C Nr Ono Ca 11374400 40.3672 -122.5742 19 CA 244 0.950 0.70 0.70 0.78 0.94 0.72 0.1% 0.0%
Northwest
Napa R At Calistoga Ca 11455900 38.5770 -122.5800 8 CA 22 0.950 1.00 0.70 0.89 0.98 0.88 5.6% 22.4%
Northwest
Navarro R Nr Navarro Ca 11468000 39.1720 -123.6706 49 CA 303 0.960 1.00 1.00 0.93 0.95 0.91 0.3% 1.9%
Nf Cache C A Hough Spring Nr Northwest
Clearlake Oaks Ca 11451100 39.1653 -122.6211 28 CA 60 0.960 1.00 0.60 0.76 0.85 0.72 0.0% 0.0%
Northwest
Nf Stony C Nr Newville Ca 11387800 39.7845 -122.4783 11 CA 63 0.910 0.80 0.70 0.78 0.92 0.78 0.1% 0.1%
Northwest
Nf Trinity R A Helena Ca 11526500 40.7817 -123.1295 26 CA 151 0.970 1.00 0.80 0.70 0.88 0.63 0.0% 0.0%
Northwest
Putah C Nr Guenoc Ca 11453500 38.7787 -122.5186 51 CA 113 0.960 1.00 0.90 0.89 0.89 0.87 4.5% 6.1%
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Northwest

Red Cap C Nr Orleans Ca 11523030 41.2400 -123.5454 7 CA 56 0.970 0.70 0.50 0.65 0.86 0.40 0.0% 0.0%
Northwest
Redwood C A Orick Ca 11482500 41.2991 -124.0524 48 CA 277 0.970 1.00 0.75 0.70 0.89 0.46 0.1% 0.0%
Northwest
Salmon R A Somes Bar Ca 11522500 41.3775 -123.4787 76 CA 751 0.950 0.30 0.80 0.70 0.89 0.67 0.0% 0.0%
Northwest
Scott R Nr Fort Jones Ca 11519500 41.6405 -123.0162 58 CA 653 0.970 0.70 0.80 0.71 0.96 0.69 0.4% 8.0%
Northwest
Scotts C Nr Lakeport Ca 11449100 39.0953 -122.9628 20 CA 55 0.940 1.00 0.90 0.81 0.96 0.80 0.4% 5.7%
Sf Gualala R Nr Annapolis Northwest
Ca 11467500 38.7048 -123.4242 25 CA 161 0.960 1.00 0.70 0.93 0.91 093 0.2% 0.5%
Sf Salmon R Nr Forks Of Northwest
Salmon Ca 11522300 41.2219 -123.2523 8 CA 252 0.960 0.80 0.70 0.81 0.99 0.79 0.0% 0.0%
Northwest
Sf Trinity R A Forest Glen Ca 11528100 40.3747 -123.3287 6 CA 208 0.950 0.80 0.70 0.57 0.90 0.38 0.0% 0.0%
Trinity R Ab Coffee C Nr Northwest
Trinity Ctr Ca 11523200 41.1111 -122.7067 42 CA 149 0.970 0.90 1.00 0.29 0.91 0.14 0.2% 0.0%
Northwest
Weaver C Nr Douglas City Ca 11525800 40.6706 -122.9439 11 CA 48 0.950 0.80 0.70 0.70 0.84 0.68 3.0% 0.0%
Northwest
Willow C Nr Willow C Ca 11529800 40.9469 -123.6621 15 CA 41 0.967 1.00 0.80 0.71 0.81 0.62 0.0% 0.0%
Sierra
Bell C Nr Pinecrest Ca 11283200 38.1626 -119.9443 16 Nevada 9 0.950 1.00 1.00 0.76  0.97 0.64 0.0% 0.0%
Clark Fork Stanislaus R Nr Sierra
Dardanelle Ca 11292500 38.3637 -119.8723 44  Nevada 68 0.970 0.80 0.70 0.61 0.95 0.59 0.0% 0.0%
Esperanza C Nr Mokelumne Sierra
Hill Ca 11307000 38.3165 -120.5965 9 Nevada 17 0.950 1.00 0.80 0.90 0.98 0.89 0.1% 0.0%
Golden Trout C Nr Cartago Sierra
Ca 11185300 36.3718 -118.2899 12 Nevada 24 0.980 0.40 0.75 0.55 0.90 0.54 0.0% 0.0%
Sierra
Maxwell C A Coulterville Ca 11269300 37.7160 -120.1909 20 Nevada 17 0.940 0.50 0.50 0.77 0.93 0.76 0.0% 0.0%
Sierra
Miami C Nr Oakhurst Ca 11257100 37.3935 -119.6553 20 Nevada 11 0.960 0.40 0.80 0.63 0.88 0.63 0.0% 0.0%
Nf Of Mf American R Nr Sierra
Foresthill Ca 11433260 39.0240 -120.7196 20 Nevada 89 0.960 1.00 0.80 0.73 0.96 0.70 0.0% 0.0%
Sierra
Oak C Nr Mojave Ca 10264600 35.0499 -118.3588 29 Nevada 16 0.940 0.30 0.10 0.26 0.61 0.12 0.0% 0.0%
San Joaquin R A Miller Sierra
Crossing Ca 11226500 37.5104 -119.1983 47 Nevada 249 0.970 0.00 0.90 0.70 0.89 0.62 0.0% 0.0%
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Wf Chowchilla R Nr Mariposa Sierra
Ca 11258900 37.4204 -119.8756 23 Nevada 34 0.950 0.60 0.70 0.80 0.94 0.78 1.0% 0.0%
Combined flow Falls C nr Southwester
White Water + Div Ca 10257501 33.8690 -116.6720 15 nCA 4 0.970 0.30 0.50 0.62 0.75 0.60 0.0% 0.0%
Southwester
Cuyama R Nr Ventucopa Ca 11136500 34.6889 -119.3588 14 nCA 90 0.955 0.10 0.10 0.58 0.87 0.43 0.1% 0.7%
Southwester
Jamul C Nr Jamul Ca 11014000 32.6376 -116.8850 53 nCA 70 0.990 0.50 0.55 0.53 0.42 0.44 4.0% 7.0%
Southwester
Little Rock C Nr Little Rock Ca 10264000 34.4630 -118.0196 48 nCA 49 0.950 0.50 0.40 0.63 0.88 0.63 0.4% 0.0%
Malibu C At Crater Camp Southwester 26.9
Nr Calabasas Ca 11105500 34.0778 -118.7027 49 nCA 105 0.950 0.40 0.80 0.70 0.82 0.62 % 1.1%
Southwester
Pine C Nr Palmdale Ca 10264530 34.6025 -118.2485 6 nCA 2 0.930 0.15 0.10 0.72 0.85 0.65 0.5% 8.1%
Southwester
Reyes C Nr Ventucopa Ca 11136480 34.6941 -119.3191 6 nCA 5 0.940 0.70 1.00 0.63 0.74 0.53 0.0% 0.0%
Southwester
San Gorgonio R A Banning Ca 10256300 33.9311 -116.8287 1 nCA 44 0.950 0.20 0.60 0.99 0.00 0.99 0.9% 0.6%
Southwester
Snow C And Div Combined Ca 10256501 33.8706 -116.6820 46 nCA 11 0.970 0.70 0.50 0.79 0.91 0.73  0.1% 0.0%
Sweetwater R Nr Descanso Southwester
Ca.+ DivCa 11015001 32.8348 -116.6239 21 nCA 45 0.910 0.20 0.50 0.49 0.83 0.26 3.3% 0.8%
Southwester
Temecula C Nr Aguanga Ca 11042400 33.4592 -116.9245 42 nCA 131 0.970 0.15 0.20 0.75 0.74 0.74 1.8% 2.8%
Southwester
Wagon Rd C Nr Stauffer Ca 11136400 34.7089 -119.2088 6 nCA 18 0.920 0.30 0.30 0.83 0.86 0.82 0.0% 0.0%
mean 188 0.960 0.61 0.64 0.66 0.82 0.61 0.8% 1.0%
unimpaired
only 0.964 0.57 0.64 0.61 0.81 0.58 0% 0%
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Appendix D: Available Datasets for the 14 Climate and
Hydrologic Variables

After running the BCM, water year summaries, and linear regression models, we were able to
create five sets of data (historic, and two GCMs with two emission scenarios). These five sets are
summarized in the six columns of Table D1 below. It is important to note the file sizes at the
bottom of the table are for only one of the five scenarios we processed.

Table D1. Mapped Datasets Produced for this Study, Their Formats and Storage Sizes

30-yr Water 30-yr Monthly
Monthly Year Summary Summary
ASCII GRID | Ascll GRID ASCII GRID

Maximum Temperature tmax | yes no yes yes yes yes
Minimum Temperature tmin | yes no yes yes yes yes
Precipitation ppt yes no yes yes yes yes
Potential
Evapotranspiration pet yes no yes yes yes yes
Runoff run yes no yes yes yes yes
Recharge rch yes no yes yes yes yes
Climatic Water Deficit cwd | yes no yes yes yes yes
Actual
Evapotranspiration aet yes no yes yes yes yes
Sublimation subl | yes no yes yes yes yes
Soil Water Storage stor | yes no yes yes yes yes
Snowfall snow | yes no yes yes yes yes
Snowpack pck yes no yes yes yes yes
Snowmelt melt | yes no yes yes yes yes
Excess Water exc yes no yes yes yes yes
Approx. size (all variables,
1 scenario,
uncompressed) 2.3TB 47GB 16GB 525GB | 200GB
Approx. size (all variables,
1 scenario, compressed) 3.17GB | 2.85GB | 19.8GB | 18.1GB

These data were intended to be available for any members of the PIER V&A study who wanted
to use them. The advantage in using them is that results are cross-comparable with other
studies that also use them. To get a copy of the data, please contact Jim Thorne or Ryan Boynton
at the University of California, Davis.

Some additional processing was conducted for a few groups, such as 10-year summaries for the
historic data rather than 30-year summaries, and extracting the data by watersheds used in
individual studies.
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Appendix E: Summary of Climate Conditions through
Time Using the 5128 HUC 12 Watersheds as Units of
Analysis

Table E1. This table summaries the variables within each of the 5128 watersheds in California, and
produces mean, standard deviation, minimum, and maximum values for the whole region from

this compilation.

min  max mean  std
Precipitation Historic (1911-1940) 419 3202.7 5454 4672
Historic (1941-1970) 47.3 3525.2 607.5  542.0
Current (1971-2000) 63.5 3548.5 6258  535.0
PCM B1 (2070-2099) 89.4 3742.4 691.7 5674
PCM A2 (2070-2099) 81.1 3511.9 6624  535.4
GFDL B1 (2070-2099) 60.4 3291.7 5512 4694
GFDL A2 (2070-2099)  54.1 3146.7  513.0 4442
Potential Historic (1911-1940) 856.8 1601.2  1229.8 187.4
Evapotranspiration  Historic (1941-1970) 835.3 1581.1 1223.6 187.9
Current (1971-2000) 837.2 1620.5 1240.0 192.1
PCM B1 (2070-2099) 900.3 16725 1291.0 193.0
PCM A2 (2070-2099)  924.3 1698.9 1317.0 1934
GFDL B1 (2070-2099) 904.7 1680.4 1298.8 192.9
GFDL A2 (2070-2099) 939.3 17284 1343.9 194.7
Runoff Historic (1911-1940) 0.0 2243.2 113.1 200.1
Historic (1941-1970) 0.0 2547.6 138.3 248.5
Current (1971-2000) 0.0 2559.3 149.0 2515
PCM B1 (2070-2099) 0.0 27111 181.6 2853
PCM A2 (2070-2099) 0.0 2512.0 166.2  263.3
GFDL B1 (2070-2099) 0.0 2312.5 110.8  206.2
GFDL A2 (2070-2099) 0.0 2213.9 107.1 197.2
Recharge Historic (1911-1940) 0.0 11983 1157 1958
Historic (1941-1970) 0.0 1313.8 134.7  227.6
Current (1971-2000) 0.0 1295.1 1319 2155
PCM B1 (2070-2099) 0.0 1270.3 131.5 206.4
PCM A2 (2070-2099) 0.0 1190.0 127.0 199.9
GFDL B1 (2070-2099) 0.0 1177.8 103.8 180.4
GFDL A2 (2070-2099) 0.0 1105.9 95.9 164.7
Climatic Water Historic (1911-1940) 16.8 1509.2 850.0 360.2
Deficit Historic (1941-1970) 12.4 1506.9 832.7 3704
Current (1971-2000) 5.8 1513.2 834.1 366.4
PCM B1 (2070-2099) 17.2 1532.9 8745  349.6
PCM A2 (2070-2099) 18.3 1579.2 9169  342.1
GFDL B1 (2070-2099) 18.0 15772 924.1 353.0
GFDL A2 (2070-2099)  20.0 1635.2  1008.1 340.5
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Appendix F: Identify Vulnerable Species and
Adaptation Strategies in the Southern Sierra of
California Using Historical Resurveys

The majority of this deliverable is submitted as a separate paper with Drs. Maria Santos and
Craig Moritz as lead authors (Santos et al. 2012). However, one of the vegetation outputs sought
for this effort, as well as for the statewide assessment, was the development of the MC1
dynamic vegetation model outputs using the 270 m grids produced in this study. The following
paragraphs describe the baseline state of development of that model. Note that while the MC1
outputs have been delayed, the research using California Wildlife Habitat Relationship (WHR)
landcover types through historic conditions has been advanced using an occupancy modeling
approach which has led to an almost completed manuscript described in the Santos paper
(Santos et al. 2012). Additionally, research on developing a method to predict TDew Mean, a
measure of the monthly average dew point temperature and a requirement for MC1 to run,
raises in its own right interesting questions for a climate research program.

The most problematic issue for the running of the new MC1 is the accurate development of
future climate grids representing dew point. Relative humidity, or dew point, is an important
component of MC1, and potentially for vegetation models generally. Therefore, we decided that
this was a worthwhile area to study.

In previous runs of the MC1 model for California, the dew point was assumed to equal the
minimum monthly temperature (Tmin). In a sensitivity analysis of the utility of Tmin to portray
TDew Mean, we found that while this metric works for about three-quarters of the continental
United States, it does not work for the southwest (Figure F1); moreover, in California it is
inaccurate over about three-quarters of the state for at least four to six months out of the year
(Figure F2). We worked with Dr. Alan Flint on a number of ways to address this issue, and tried
four separate approaches to developing accurate projections of the TDew Mean for future
climates. These have all involved using the TDew Mean values provided in the baseline PRISM
historical data to develop some type of correlation between climate variables that would permit
future projections.

First, we looked at Tmin = TDew Mean. This is what has been used in previous versions of the
MC1 run for California. As mentioned above, this approach produced very low R? values for
Southern California, the Sierra, and the Central Valley.

Second, we looked at the relationship between PET and Tmin, with the hypothesis that a high
potential evapotranspiration might help improve our correlations. However this similarly had
unsatisfactory results.

Third, we compared precipitation with Tmin, but that also did not produce suitable results.

Finally, we calculated relative humidity (Campbell 1977; Igbal 1983) for each month using
TDew Mean and Tmin from the 800 m historical PRISM data. This permitted calculation of
TDew Mean using the new, modified Campbell equations (Bristow and Campbell 1985). This

84



approach permitted us to compare TDew Mean as we calculated, compared to PRISM values.
For the great majority of California, this returned monthly values within 6°C (42.8°F) from the
PRISM values (mostly from 0°C—4°C, or 36°F-39.2°F). We decided to use this approach to
prepare future projections of TDew Mean for use in the MC1 model. This approach requires the
assumption that the spatial patterns of relative humidity will remain constant into the future,
i.e,, that it will be much lower in the desert southwest and higher in the Pacific Northwest. We
finished preparing these monthly values for use in the MC1 model and sent the data to the lab
at Oregon State University where MC 1 is produced. The model baseline is being spun up.
Results will be forwarded when these are made available.

Figure F1: Monthly Correlation of TDew Mean with Tmin for January, Showing that Tmin is a
Decent Predictor of Dewpoint for the Wetter Parts of the U.S., but That This Relationship Does Not
Hold for the Arid Southwest
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Figure F2: Monthly Correlation of Tmin to PRISM TDew Mean, Showing That Minimum
Temperature Correlates Poorly with Dew Point for Large Portions of California,
in the Month of April
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