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Abstract

Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of
the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the
West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immedi-
ately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-min-
ing in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing
calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West
Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct
documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and
corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses
of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sac-
ramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the
19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge asso-
ciated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for
altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in
the surface environment.
� 2008 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

The global biogeochemical cycling of lead is dominated
by human emissions (Patterson, 1965; Patterson et al.,
1976; Shirahata et al., 1980). Emissions of lead from com-
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bustion of leaded gasoline have accounted for 75% of total
global emissions since the early 20th century, and over the
same period the mining of lead-bearing ores has increased
(Nriagu and Pacyna, 1988; Nriagu, 1990; Flegal and Smith,
1995). Few lead isotope studies have addressed the influ-
ence of acid mine drainage from lead mines in riparian sys-
tems beyond 40 km downstream (e.g., Church et al., 1994,
1999, 2004, 2007; Nordstrom et al., 2000; Schemel et al.,
2000), and in none of those studies has the river-
borne transport of lead from gasoline emissions been
compared to the transport of lead from acid mine drainage.
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The present study compares the transport of lead from acid
mine drainage, Sierra Nevada hydraulic Au-mining sedi-
ment, and historical leaded gasoline emissions throughout
a drainage basin encompassing more than 160,000 km2:
the Sacramento River system of northern California.

In California, gasoline-derived lead emissions have been
estimated to be 90% of the total lead flux, a figure greater
than the global average of 75% due to the historically large
number of cars in the state (Nriagu, 1990; Steding et al.,
2000). The sale of leaded gasoline for automobiles ended
in California in 1992, but the release of that gasoline lead
bound in drainage basin soils and streambed sediments
may take decades if not centuries (Dunlap et al., 2000; Ste-
ding et al., 2000). This slow transport of contaminant lead
out of the Sacramento River system, which drains 40%
(164,420 km2) of the land surface area in California, has
been inferred from previous work in the waters of the
northern reach of San Francisco Bay estuary, where the riv-
er enters the estuary and mixes with a saline wedge of North
Pacific Ocean water (Ritson et al., 1999; Dunlap et al.,
2000; Steding et al., 2000).

To document lead sources and dynamics of transport in
the Sacramento River upstream of the San Francisco Bay
estuary, we have collected a set of samples along the
426 km length of the river downstream of Shasta Dam to
the city of Freeport, 74 km from the river’s mouth. Mea-
surements of lead concentrations and isotopic compositions
in samples of streambed sediment and suspended colloid
material in water allowed us to numerically model the re-
moval of localized lead inputs from the West Shasta Cu-
mining district, to better define the lead isotope composi-
tion of hydraulic Au-mining sediments of the Sierra Nevada
foothills and their influence on lead compositions in the
Sacramento River system, and to quantify the presence of
lead from past gasoline emissions throughout the drainage
basin.

2. BACKGROUND

Sediment cores dated by radiochemical methods from
the northern reach of the San Francisco Bay estuary, where
the waters of the Sacramento River enter the Bay, chronicle
the historical fluxes of natural and industrial lead flowing
out of the Sacramento River and distinguish the sources
of these fluxes by their isotopic compositions (Ritson
et al., 1999). The lead isotope signature of pre-anthropo-
genic river sediment is recorded at the base of the cores in
samples older than 1800 AD (206Pb/207Pb = 1.215–1.225
and 208Pb/207Pb = 2.480–2.488). These lead isotope ratios
are interpreted to represent the natural composition of lead
transported to the mouth of the Sacramento River: lead de-
rived from rock weathering in the drainage basin prior to
the onset of industrial-age human activity in the system
(Ritson et al., 1999; Dunlap et al., 2000). These interpreted
pre-anthropogenic lead isotope ratios fall within the range
of measured lead isotope ratios in the rocks of the Sierra
Nevada mountains (e.g., Chen and Tilton, 1991; Wenner
and Coleman, 2004).

The first perturbation of the natural lead isotope ratio
occurred from 1852 to 1914 when sediment loads in the Sac-
ramento River increased by 10-fold due to the influx of sed-
iment from the hydraulic mining of placer gold deposits in
the foothills of the Sierra Nevada (Nichols et al., 1986;
Dunlap et al., 2000). The isotopic signature of that hydrau-
lic Au-mining sediment is partially masked in the sediment
core record by lead emissions from a lead smelter that oper-
ated nearby the core sites (Ritson et al., 1999). However,
subsequent studies determined that the lead from hydraulic
Au-mining sediment is a mixing end-member in waters of
the combined Sacramento/San Joaquin River delta sampled
in the 1990s (Dunlap et al., 2000; Steding et al., 2000). The
lead isotope ratios of the hydraulic Au-mining end-member
were directly measured (206Pb/207Pb = 1.220–1.245 and
208Pb/207Pb = 2.500–2.515) in two samples from the Malak-
off Diggins, the largest of the hydraulic gold mines in the
Sierra Nevadan foothills, located on the Yuba River
(Fig. 1).

In addition to the hydraulic, placer gold mines in the
Sierra Nevadan foothills, hard-rock Cu-mining of the vol-
canogenic massive sulfide deposits was active from the
1860s to the 1960s in the West Shasta mining district in
the northern part of Sacramento River drainage basin
(Fig. 1; Nordstrom and Alpers, 1999; Nordstrom et al.,
2000; Alpers et al., 2003, and references therein). The West
Shasta mining district encompasses the mines of the Iron
Mountain mining district, the largest in the West Shasta re-
gion, whose runoff drains into the Keswick Reservoir, and
smaller mines whose runoff drains into the Lake Shasta res-
ervoir. The Devonian-age, Kuroko-type massive sulfide
deposits were mined primarily for copper, silver, and pyrite,
and contain minor amounts (65% by volume) of lead sul-
fide minerals. Despite this relatively high lead content, the
low lead isotopic ratios of the West Shasta ores and mining
waste (206Pb/207Pb 6 1.166; Doe et al., 1985) are not evi-
dent in the river-mouth sediment core record (Ritson
et al., 1999): the 206Pb/207Pb ratios of river-mouth sedi-
ments do not fall below 1.215 at any time before the 1940s.

The second perturbation to lead source and isotopic
composition in the Sacramento River did not come until
the late 1940s with the onset of the large-scale use of lead
alkyl additives to gasoline. Dated sediment cores record this
onset as the first time that the 206Pb/207Pb ratio fell below
1.215 and lead concentrations rose by more than a factor
of two: the largest perturbation to lead concentrations
and isotopic compositions during the past 1000 years in
the Sacramento River system (Ritson et al., 1999). This im-
pact is attributed to the deposition in the Sacramento River
drainage basin of more than 20 million kilograms of lead
from gasoline emissions (Steding et al., 2000). The isotopic
composition of lead alkyl additives changed from the late
1940s through the 1980s when their use was finally phased
out (Dunlap et al., 2000; Steding et al., 2000, and references
therein). The lead isotope composition of gasoline in Cali-
fornia during the last half of the 20th century ranged from
206Pb/207Pb = 1.14–1.23 to 208Pb/207Pb = 2.42–2.45 (Dun-
lap et al., 2000; Steding et al., 2000, and references therein).
Therefore, for the past 150 years the lead content of the
Sacramento River has been dominated by hydraulic
Au-mining sediment and deposits from leaded gasoline
emissions, with the pre-anthropogenic terrestrial lead
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Fig. 1. Sampling sites along the Sacramento River, tributaries, and Yolo Bypass distributary. Site names and numbers (unless otherwise
noted, the sample location is on the Sacramento River): 1. below Shasta Dam; 2. below Keswick Dam; 3. at Rodeo Park near Redding; 4.
above Churn Creek near Anderson; 5. at Balls Ferry; 6. above Bend Bridge; 7. at Tehama; 8. at Colusa; 9. at Verona; 10. at Tower Bridge; 11.
at Freeport; 13. Spring Creek below Spring Cr. Debris Dam; 14. Spring Creek below Iron Mt. Road; 16. Keswick Reservoir, Spring Cr. arm;
17. Cottonwood Cr., near Cottonwood; 19. Yolo Bypass at I-80 near W. Sacramento. Hydraulic mining sample sites in the Bear River
drainage basin (Dutch Flat, You Bet Pit, and Gold Run) and the Yuba River drainage basin (Malakoff Diggins) are also shown.
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component no longer observed to influence the lead isotope
composition of Sacramento River waters (Dunlap et al.,
2000; Steding et al., 2000).

In addition to these century-scale changes in lead
sources to the Sacramento River, decadal trends in those
sources were observed in the 1990s (Steding et al., 2000).
Samples of water taken from the mouth of the Sacramento
River showed a progressive shift away from gasoline lead
compositions and towards the hydraulic Au-mining end-
member during the 1990s (Steding et al., 2000). Superim-
posed on that decadal trend were seasonal variations in lead
isotopic compositions, with water samples collected during
high-flow periods consistently higher in 206Pb/207Pb than
those taken during low flow. This seasonal shift was attrib-
uted to the advection of 1980s gasoline lead into the Sacra-
mento River by elevated surface runoff during the high flow
events (Steding et al., 2000). These decadal trends allowed
refinement of the end-member mixing that appears to con-
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trol lead isotope compositions in the Sacramento River: the
hydraulic Au-mining sediments mix with two components
of leaded gasoline emissions, a 1980s component (bound
in streambed sediments and the near-surface soils of the
drainage basin) and a 1960–70s gasoline lead component
(bound in streambed sediments and subsurface soils of
the drainage basin) (Steding et al., 2000).

Consequently, the present study examines the lead con-
centration and isotopic composition of river water colloids
and streambed sediment samples on a 426 km reach of the
Sacramento River upstream of the delta region (Fig. 1). The
geographic variation in lead sources to the river is used to
test the validity of the sources inferred from previous re-
search at the Sacramento River mouth, including historical
gasoline emissions and hydraulic Au-mining sediment from
the Sierra Nevada. In addition, we determine the downriver
extent of contributions to lead load from another mining-
related source of lead: the massive sulfide deposits of the
West Shasta Cu-mining district in the upper Sacramento
River watershed. By combining the chronological studies
from the San Francisco Bay estuary with this geographic
study, an integrated view of contaminant lead movement
in the Sacramento River basin is constructed.

3. METHODS

Samples of river water and streambed sediments were
collected along a 426 km reach of the Sacramento River
(Fig. 1). Samples were also collected in tributaries to the
Sacramento River in the West Shasta Cu-mining district
(Fig. 1, inset). Sediment samples were also collected at sev-
eral locations in the Sierra Nevada hydraulic Au-mining re-
gion. All sampling and subsequent handling was done using
trace metal clean techniques (Patterson et al., 1976; Alpers
et al., 2000a). These techniques were comparable to those in
our previous studies of lead isotope compositions in the
lower reaches of the Sacramento River (Dunlap et al.,
2000) and San Francisco Bay (Ritson et al., 1999; Steding
et al., 2000).

The water sampling took place during December 1996
and January 1997. Flow conditions during December 1996
were typical of moderately high flow conditions in the early
wet season, whereas flow conditions during January 1–3,
1997 were extremely high. The January 1997 conditions were
characterized by elevated loads of lead, mercury, and other
trace metals (Alpers et al., 2000b; Roth et al., 2001). Stream-
bed sediment samples were collected during October and
November 1996, prior to the wet season.

Water samples were filtered and ultra-filtered, and a size
fraction in the range from 0.005 to 1 lm was collected for
analysis as representative of the colloidal component of
the water. By comparison to whole water lead concentra-
tions in unfiltered samples, we determined that the colloidal
size fraction contained �80% of the lead, on average, in the
river water. Previous work in the waters of San Francisco
Bay and the river mouth demonstrated that lead isotopic
equilibrium exists between filtered (<0.45 lm) and unfil-
tered water fractions (Dunlap et al., 2000). The colloidal
lead isotope analyses in this study, therefore, represented
the majority of the lead carried by the water and may be di-
rectly compared to whole water lead isotope compositions
reported in previous studies.

Streambed sediments, hydraulic Au-mining sediments,
and colloid samples were fully digested in hydrofluoric
and nitric acids in preparation for concentration and isoto-
pic analysis. Lead concentrations were measured by mag-
netic sector, high-resolution, inductively coupled mass
spectrometry (HR ICP-MS). The reproducibility of concen-
tration measurements for each sample was determined by
triplicate analysis of each digest and was better than 5% rel-
ative standard deviation from the mean of the triplicate
analyses with the exception of one streambed sediment sam-
ple (#3) for which the error was 5.6%.

To determine the accuracy of concentration measure-
ments of lead in both river water colloids and streambed
sediments, Standard Reference Materials (SRMs) certified
by NIST were processed and analyzed with the samples (Al-
pers et al., 2000a). NIST SRMs for river water (1643a,
1643b, and 1643d) made up 30% (n = 1984) of the river
water colloid samples processed and analyzed in the labora-
tory during the period when the samples in this study were
analyzed, and NIST SRMs for streambed sediments (1645
and 2704) made up 15% (n = 19) of the streambed sediment
samples processed and analyzed. In 97% of measurements
of river water colloids, SRMs showed 85–115% recovery
of lead, and 92% showed 90–110% recovery of lead. All
streambed sediment SRM measurements showed 90–110%
recovery of lead. Field blanks and process blanks for lead
were two to three orders of magnitude lower in concentra-
tion than concentrations measured in river water colloids,
therefore no blank correction was applied to the measured
concentrations (Alpers et al., 2000a).

Lead isotope compositions were analyzed by thermal
ionization mass spectrometry (TIMS) using both a VG-
54R single-collector mass spectrometer and a Micromass
Sector 54, 7-collector mass spectrometer. A subset of sam-
ples was run on both instruments, and no systematic biases
were observed between the two instruments. Samples were
corrected for mass fractionation of 0.13% (sd ± 0.02) per
atomic mass unit based on replicate analyses of NIST
SRM-981. Typical analytical uncertainties at the 95% con-
fidence interval are �0.08% relative standard deviation for
206Pb/204Pb; �0.04% for 206Pb/207Pb; and �0.05% for
208Pb/207Pb.

4. RESULTS

4.1. Lead concentrations

The streambed sediments and suspended colloidal mate-
rial in water show geographic variation in their lead con-
centrations (Fig. 1 and Table 1). Lead concentrations of
both colloids and streambed sediments diminish down-
stream of the Cu-mining region (Fig. 2).

4.1.1. Sacramento River water colloids

Within 15 km of the Cu-mining region, concentrations
of lead in river water colloids decrease by a factor of four,
dropping from a high of nearly 80 lg/g in Spring Creek to
an average value of 21 lg/g (sd ± 2) along the 300 km of



Table 1
Lead concentration and isotopic data. Upriver distance for Sacramento River samples is measured as distance upstream from the Sacramento
River delta. Downriver distance is measured as distance from the farthest upstream sample, taken in the Sacramento River downstream from
Shasta Dam.

Sample # Sample type/name Date Upriver
(km)

Downriver
(km)

Pb
(mg/kg)

206Pb/
204Pb

206Pb/
207Pb

208Pb/
207Pb

Sacramento River colloidal samples

Within Cu-Mining Region
Sacramento River sites

1 Below Shasta Dam 12-Dec-96 500 0 40 18.661 1.1967 2.4444
16 Keswick reservoir at Spring Creek Arm ll-Dec-96 489 11 62 18.135 1.1692 2.4304
2 Below Keswick Dam ll-Dec-96 486 14 72 18.185 1.1728 2.4312
2 Below Keswick Dam 02-Jan-97 486 14 39 18.344 1.1819 2.4350

Tributaries

13 Spring Cr. below Spring Cr. debris dam 11-Dec-96 489 11 76 18.103 1.1684 2.4282
14 Spring Cr. below Iron Mt. Road 02-Jan-97 489 11 49 18.079 1.1657 2.4277

Outside Cu-Mining Region
Sacramento River sites

10 At Tower Bridge 06-Jan-97 90 410 33 19.115 1.2176 2.4985
8 At Colusa 04-Jan-97 230 270 20 18.905 1.2097 2.4718
6 Above Bend Bridge 03-Jan-97 415 85 24 18.866 1.2077 2.4681
9 At Verona 18-Dec-96 126 374 22 18.808 1.2042 2.4673

11 At Freeport 17-Dec-96 74 426 24 18.844 1.2049 2.4700
8 At Colusa 16-Dec-96 230 270 19 18.792 1.2042 2.4654
6 Above Bend Bridge 12-Dec-96 415 85 21 18.785 1.2041 2.4646

Distributary

19 Yolo Bypass at 1–80 near W. Sacramento 07-Jan-97 134 366 22 18.896 1.2094 2.4717

Sacramento River streambed sediment samples

Within Cu-Mining Region
Sacramento River sites

3 Rodeo Park 23-Oct-96 479 21 36 18.234 1.1732 2.4344
4 Churn Creek 22-Oct-96 459 41 36 18.354 1.1830 2.4470
5 Balls Ferry 22-Oct-96 444 56 24 18.704 1.1990 2.4608

Outside Cu-Mining Region
Sacramento River sites

6 above Bend Bridge 22-Oct-96 415 85 14 18.819 1.2063 2.4667
7 Tehama 23-Oct-96 332 168 14 18.823 1.2073 2.4657
8 Colusa 14-Nov-96 230 270 12 18.871 1.2096 2.4692
9 Verona 13-Nov-96 126 374 19 18.874 1.2079 2.4697

11 Freeport 15-Nov-96 74 426 16 18.877 1.2076 2.4691
Tributary

17 Cottonwood Creek 23-Oct-96 440 60 14 18.921 1.2100 2.4714

Sierra Nevada hydraulic Au-mining samples

Hydraulic Au-mine sediments

You Bet Pit N/A N/A 15 19.206 1.2255 2.4900
Highway 80 #1 N/A N/A 15 19.174 1.2240 2.4905
Highway 80 #2 N/A N/A 10 19.163 1.2245 2.4874
Gold Run #1 N/A N/A 22 19.129 1.2225 2.4848
Gold Run #2 N/A N/A 15 19.123 1.2213 2.4858
Dutch Flat N/A N/A 16 19.323 1.2319 2.5005
Malakoff Diggings #1 N/A N/A 10 19.196 1.2246 2.4937
Malakoff Diggings #2 N/A N/A 8 19.484 1.2417 2.5161

Creeks

Steephollow Creek (at You Bet Pit) N/A N/A 14 19.093 1.2205 2.4858
Greenhorn Creek N/A N/A 14 19.083 1.2201 2.4860

Contaminant Pb isotope systematics—Sacramento R. 5939
the river between Bend Bridge (site #6) and Verona (site
#9). Passing through Sacramento and further downstream
the lead concentrations rose again to an average of 29 lg/
g (sd ± 6) (sites #10 and #11). The highest lead concentra-
tion in suspended colloid material outside of the West Shas-
ta Cu-mining region occurred in sample 10, taken from
Tower Bridge in Sacramento, downstream of the American
River’s confluence with the Sacramento River.
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4.1.2. Sacramento River streambed sediments

Lead concentrations of streambed sediments followed
a pattern similar to that of the colloids. Samples col-
lected within 60 km of the West Shasta Cu-mining re-
gion had an average lead concentration of 32 lg/g
(sd ± 7) whereas those collected at a distance of 60 km
or greater had an average lead concentration of 15 lg/
g (sd ± 2). As was noted among colloid samples, the
lead concentrations in samples collected in the vicinity
of Sacramento and farther downstream were elevated
(avg. 18 lg/g, sd ± 2) compared to the other samples
collected outside of the Cu-mining region (avg. 14 lg/g,
sd ± 1). The highest lead concentration among stream-
bed sediments collected outside of the Cu-mining region
(19 lg/g) occurred in the sample taken at Verona (site
#9), where the Feather River joins the Sacramento
River.

4.1.3. Hydraulic Au-mining colloids and sediments

The concentration of lead in sediment and water col-
loid samples from the hydraulic Au-mining region ran-
ged from 8 lg/g in one sample from Malakoff Diggins
to 22 lg/g in a sediment sample from Gold Run. The
average lead concentration of sediments from the
hydraulic Au-mining region was 14 lg/g (sd ± 4), indis-
tinguishable from the average lead concentration of Sac-
ramento River streambed sediments collected from
outside of the West Shasta Cu-mining region (15 lg/g,
sd ± 2).

4.2. Lead Isotopic compositions

Lead isotopic variations among colloid and streambed
sediment samples parallel the patterns seen in lead concen-
trations (Fig. 3a and b).
4.2.1. Colloids within the Cu-mining district

Colloid samples collected within 15 km of the Cu-min-
ing region form a co-linear array in a plot of 206Pb/207Pb
vs. 208Pb/207Pb and contain the lowest isotopic ratios
among the samples in this study. The lowest ratios
(206Pb/207Pb = 1.1657 and 208Pb/207Pb = 2.4277) are found
in Spring Creek as it enters Keswick Reservoir (site #14).
Upstream of the Spring Creek sample site is Iron Moun-
tain, the largest of the historical copper mines in the West
Shasta mining district. The highest isotopic values among
samples in the Cu-mining region (206Pb/207Pb = 1.1967
and 208Pb/207Pb = 2.4444) occurred in the farthest up-
stream sample in the study (site #1), taken on the Sacra-
mento River below Shasta Dam. Lake Shasta receives
streams draining several smaller copper–zinc mines of the
West Shasta Cu-mining district, as well as copper–zinc
mines of the East Shasta mining district. Two populations
of mines can be distinguished isotopically, those of Iron
Mountain and those upstream of Shasta Dam.

4.2.2. Colloids outside of the Cu-mining district

Colloid samples collected farther than 60 km down-
stream from the Cu-mining region plot in a narrow range
of isotopic compositions (206Pb/207Pb = 1.204–1.210 and
208Pb/207Pb = 2.464–2.472; Fig. 3a and b). One colloid sam-
ple (site #10) outside of the Cu-mining region plots apart
from the rest, having the highest isotope ratios in the study
(206Pb/207Pb = 1.2176 and 208Pb/207Pb = 2.4985). This
sample was taken from Tower Bridge, Sacramento, just
downstream of the entry of American River into the Sacra-
mento River. As previously noted, this sample also contains
the highest lead concentration found in any sample outside
of the Cu-mining region.

When viewed in detail, the colloid samples collected
from outside of the Cu-mining region fall into to two sub-
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groups: (i) samples taken in December 1996 fall on a co-lin-
ear trend with lower 206Pb/207Pb isotopic values than (ii) a
second co-linear trend of samples taken in January 1997
(Fig. 3b and Table 1). At two locations (sites #6 and #8)
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samples were taken both in December 1996 and January
1997 and show the same offset as seen in the samples as a
whole. The discharge measured at three gauging stations
on the Sacramento River was an average of 42% higher
on the days sampled in January 1997 compared with those
sampled in December 1996 (Fig. 4).

4.2.3. Sacramento River and cottonwood creek streambed

sediments

The variation in lead isotopic compositions from
streambed sediments can also be described with reference
to their distance downstream from the West Shasta Cu-
mining district. The isotopic compositions of the three
streambed sediments collected within 60 km of the Cu-min-
ing region (sites #3, #4, and #5) follow a co-linear trend
from low isotopic compositions in the sample taken nearest
the Cu-mining region (206Pb/207Pb = 1.1732 and 208Pb/
207Pb = 2.4344) to an isotopic composition approaching
the samples collected outside of the Cu-mining region
(Fig. 3a). Isotopic compositions of the streambed sediments
collected >60 km from the Cu-mining region fall within the
cluster of colloid samples also collected outside of the Cu-
mining region. In addition, the isotopic ratios of the
streambed sediments follow the same co-linear trend as
those of the colloids collected during the higher discharge
period in January 1997.

4.2.4. Streambed sediment and colloid samples compared

At sample sites where both streambed sediments and riv-
er water colloids were collected, the lead isotopic values of
the sediment/colloid pairs do not correspond to each other
(Fig. 3b). At sites #6, #8, and #9 the colloids collected dur-
ing December 1996 have lower lead isotope ratios than their
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Fig. 4. Sacramento River discharge measured at three gauging stations du
marked by vertical lines: 6. above Bend Bridge; 8. at Colusa; 9. at Verona
near W. Sacramento. Also see Fig. 1 for sample locations. Discharge data
California Data Exchange Center (http://cdec.water.ca.gov/).
associated streambed sediments, whereas colloids collected
during January 1997 have higher lead isotope ratios than
their associated streambed sediments. Such decoupling sug-
gests that local streambed sediment is not the predominant
source of lead to river colloids.

4.2.5. Hydraulic Au-mining sediment samples

The ten samples taken from the hydraulic gold mining
regions in the Yuba and Bear river drainage basins
(Fig. 1) fall into two groups (Fig. 3a). The first group con-
tains eight samples that cluster around a range of lead iso-
tope compositions: 206Pb/207Pb = 1.2213–1.2255 and
208Pb/207Pb = 2.4848–2.4937. For the purpose of discussion
below, this group is designated as the low-ratio hydraulic
Au-mining samples.

The second group contains two samples, one from Mal-
akoff Diggins (site of the largest hydraulic mine) and the
second from a smaller hydraulic mine at Dutch Flat. Com-
pared to the other hydraulic Au-mining samples, these two
samples have distinctly higher 206Pb/207Pb and 208Pb/207Pb
ratios. For the purpose of discussion below, these two sam-
ples are designated as the high-ratio hydraulic Au-mining
samples.

5. DISCUSSION

5.1. Lead concentration variations in colloid samples

Changes in lead concentrations of colloid samples reflect
dynamic processes in the riparian system. The colloidal
component sampled carries approximately 80% of the lead
found in the Sacramento River water. Because colloids can
be advected into the river by surface runoff, re-suspended
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into river water from streambed sediments, and after aggre-
gation settled out of the water by physical processes they
provide a sensitive tool for tracing the movement of lead
into and out of reservoirs that control lead flux in the Sac-
ramento River.

The constant-rate settling of lead bound to suspended
particles such as colloids should produce an exponential de-
crease in lead concentrations downriver of the point where
lead is introduced. This idealized non-conservative trace
element behavior can be expressed by a simple decay law
equation with a term added to allow for an additional
downstream contribution of lead to the water column from
internal (e.g., streambed) and external (e.g., runoff) sources
(Thomann and Mueller, 1987):

C ¼ C0 � eð�K�xÞ þ I s

where

C0 = initial concentration of lead (i.e., at x = 0),
C = concentration of the element at downstream dis-
tance x,

X = downstream distance (in km from the first sample
point where lead is introduced),
K = lead-loss constant (units of 1/km),
Is = concentration of lead supplied by internal sources.

The decay law equation adequately models the change in
lead concentrations in Sacramento River water colloids
from the Cu-mining region to 370 km downstream at Vero-
na (sample 9; Fig. 5). The 4-fold reduction of lead concen-
trations within 14 km of the Cu-mining region is consistent
with, and in fact predicted by, the settling out of lead scav-
enged to particles. However, in order to maintain the con-
centrations of lead measured in colloids downstream of the
Cu-mining region, an additional source providing 19 lg/g
of lead to river water colloids is required (Is = 19). Without
such a source, the rate of lead loss in the river predicted by
10 

20 

30 

40 

50 

60 

70 

80 

0 100 200 300 400 500 

Le
ad

 (µ
g/

g)
 

Downstream distance (km) 

13 
2 River colloids

with site #s

Decay model 
16 

14 

2 
1 

6 
8 19 

11

10 

9 

8 
6 

Fig. 5. Concentration variation in colloid samples showing the
trend of an exponential decay model for lead loss during
downstream transport. See Section 5 for details.
the model would reduce the lead concentration to nearly
zero within 20 km of the Cu-mining district. The source
of the additional lead is not constrained by the concentra-
tion data or by the model but is likely to be either stream-
bed sediments or surface runoff because point source
discharges or additional inputs from acid mine drainage
are not present along the 200 km stretch of the Sacramento
River between Bend Bridge (site #6) and Colusa (site #8).

The simple decay law model does not adequately explain
the lead concentrations observed at Verona and farther
downstream (site #8). The model predicts that lead concen-
trations along the Sacramento River will decrease from the
value of 20 lg/g measured at Colusa to 19 lg/g at Verona
(site #9). At Verona, where the Feather River enters the
Sacramento River, the measured concentration is 16% high-
er than the modeled value. The lead concentration mea-
sured from the Yolo Bypass, which receives water from
the Sacramento River near Verona, is also 16% higher than
the predicted value. Farther downstream, at Tower Bridge,
past the point where the American River enters the Sacra-
mento River, the measured valued is 74% higher than the
model predicts. And at Freeport, the site farthest downriver
in the study, the measured colloidal lead concentration is
26% greater than the modeled value. These increases sug-
gest downriver lead inputs in addition to the 19 lg/g lead
flux used in the model.

It appears, therefore, that there are three stages of
change in lead concentration along the Sacramento River:
(i) the first stage is within 14 km of the Cu-mining region
where a 4-fold decrease in lead concentrations occurs, as
predicted by the exponential decay law model due to parti-
cle settling; (ii) the second stage is the 360 km of Sacra-
mento River between the Cu-mining region and Verona
along which colloidal lead concentrations approach an
asymptotic limit, the result predicted by the decay law mod-
el with an internal source that contributes a 19 lg/g colloi-
dal lead concentration; (iii) the third stage is the
Sacramento River downstream of Verona where lead con-
centrations are 16–74% higher than the modeled values.
Lead isotopic compositions allow identification of the lead
sources that create these concentration variations.
5.2. Lead isotope variations in Cu-mining region colloids

Isotopic compositions of colloid samples collected with-
in the Cu-mining region fall along an array defined by a
binary mixture of lead from the Lake Shasta and Iron
Mountain mining sources (Figs. 1 and 3a). Ratios of col-
loids collected from below Lake Shasta Dam (site #1;
206Pb/207Pb = 1.1967 and 208Pb/207Pb = 2.4444) are in-
ferred to represent the lead isotope compositions of acid
mine drainage into Lake Shasta mixed with a minor com-
ponent of lead derived from weathering of rocks in the
Lake Shasta drainage. The lead isotope composition
(206Pb/207Pb = 1.1657–1.1692 and 208Pb/207Pb = 2.277–
2.4304) of samples collected from Spring Creek (sites #13,
#14, and #16) contain lead derived from the Iron Mountain
mining district that drains into Spring Creek. Spring Creek
empties into Keswick Reservoir downstream of sample site
#1. The isotopic composition (206Pb/207Pb = 1.1728–1.1819
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and 208Pb/207Pb = 2.4312–2.4350) of lead from the site far-
thest downstream among the Cu-mining region samples
(site #2) represents a mixture in Keswick Reservoir of lead
from the Lake Shasta mines with lead from the Iron Moun-
tain mines. Because river discharge varied on the dates that
site #2 was sampled, the isotopic compositions vary in the
two samples from site #2.

Taking the 206Pb/207Pb compositions from Spring Creek
(site #14) in January 1997 and Lake Shasta (site #1) in
December 1996 as mixing end-members, the sample taken
from Keswick Reservoir (site #2) in December 1996 con-
tains 23% Lake Shasta component and 77% Iron Mountain
component, whereas the sample taken in January 1997 con-
tains 53% Lake Shasta component and 47% Iron Mountain
component. The higher precipitation, and its accompanying
increase in river discharge in January 1997 (Fig. 4), appears
to have carried a greater portion of Lake Shasta mining
lead into Keswick Reservoir compared to the 43% lower
discharge period observed in December 1996.

5.3. Lead isotope variations in Cu-mining region streambed

sediments

The three streambed sediments collected within the Cu-
mining region fall along a linear trend (R2 = 0.99, least-
squares linear regression) extending from the lead isotope
compositions of the Iron Mountain Cu-mines towards the
composition of pre-anthropogenic terrestrial lead (Fig. 6).
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This linear array in such a plot of lead isotope ratios is con-
sistent with binary mixing of two lead sources.

However, three potential sources are co-linear in this
case. These are the Iron Mountain Cu-mines (206Pb/
207Pb = 1.166 and 208Pb/207Pb = 2.428, as observed at site
#14), the average lead isotope composition of leaded gaso-
line from 1964 to 1979 (206Pb/207Pb = 1.183 and 208Pb/
207Pb = 2.443), and the pre-anthropogenic terrestrial lead
measured in sediment cores from San Francisco Bay radio-
metrically dated to before 1853 AD ((206Pb/207Pb = 1.215–
1.225 and 208Pb/207Pb = 2.480–2.488). This overlap
precludes distinguishing between the mingled influences of
Cu-mining and gasoline lead, but the linear trend towards
the pre-anthropogenic terrestrial values confirms the pres-
ence of a terrestrial lead contribution, as one would expect
to find in whole sediment digests.

5.4. Lead isotope variations in samples collected outside of

the Cu-mining region

Isotopic compositions of samples of colloids and stream-
bed sediments collected outside of the Cu-mining region
illuminate the dynamics of lead in the Sacramento River
in the 370 km reach of the river along which they were col-
lected. The isotopic compositions of the colloids and those
of the streambed sediments are each consistent in their indi-
cation of the binary mixing of lead sources outside of the
Cu-mining region.
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5.4.1. Identifying lead sources

As noted in Section 4, the colloid samples fall into high
flow and low flow subgroups (Fig. 3b): these subgroups plot
in trends that parallel those seen in previous research (Ste-
ding et al., 2000) at the mouth of the Sacramento River
(Fig. 7). In that study the authors observed that samples
collected during periods of relatively higher river discharge
were displaced towards higher (206Pb/207Pb values (61.205)
relative to the values in samples collected during periods of
lower flow (206Pb/207Pb 6 1.200). This variation was attrib-
uted to a mixture of three lead sources: time-averaged
1960–70s leaded gasoline emissions bound in bed sediments
(206Pb/207Pb = 1.183 and 208Pb/207Pb = 2.443), 1980s
leaded gasoline emissions bound in the uppermost soil lay-
ers of the drainage basin (206Pb/207Pb = 1.200–1.234 and
208Pb/207Pb = 2.442–2.457), and lead from historic hydrau-
lic Au-mining sediments (206Pb/207Pb = 1.223–1.245 and
208Pb/207Pb = 2.497–2.517). Periods of elevated surface
runoff were interpreted to advect additional 1980s gasoline
lead from soils into the river, producing the elevated lead
isotopes values seen during high-flow periods. By contrast,
the water samples collected during low-flow periods were
interpreted to be dominated by lead from the hydraulic
Au-mining sediments and time-averaged 1960–70s gasoline
emissions.

Whereas the former study referenced above was unable
to distinguish between lead in hydraulic Au-mining sedi-
ments that was re-suspended from within the delta and
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lead) newly advected out of the Sierra Nevada foothills,
data in the present study clearly demonstrate the presence
of hydraulic Au-mining sediments in the Sacramento River
upstream of its delta.

A component of lead derived from hydraulic Au-min-
ing sediments is inferred from the linear mixing trends in
Sacramento River sediment and colloid samples collected
in this study. Isotopic compositions of sediments and col-
loids collected in the Sacramento River outside of the
Cu-mining region each define a linear mixing trend be-
tween past leaded gasoline emissions and the high-ratio
hydraulic Au-mining sediment (Fig. 8). To illustrate this
mixing trend, a least-squares linear regression through
the colloid samples (R2 = 0.88; m = 0.40; F = 44; df = 6;
n = 8) can be calculated, extending from the field of gas-
oline lead compositions towards values of high-ratio
hydraulic Au-mining sediments; a linear regression
through the streambed sediment data (R2 = 0.38; m =
0.42; F = 1.7; df = 3; n = 5) follows a trend of nearly
identical slope. This second linear regression through
the sediment samples does not have a high statistical sig-
nificance when considered in isolation. However, when
considered in conjunction with the linear regression of
the colloid samples, the trends corroborate upstream
what was seen downstream, at the Sacramento River
mouth, in two previous studies (Dunlap et al., 2000; Ste-
ding et al., 2000).
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The linear regression through the colloid samples is con-
trolled by the isotopic value of one sample taken at Tower
Bridge (#10). This sample is located at a point on the Sac-
ramento River downstream of the confluence with the
American and Feather rivers, approximately 160 km down-
stream from the largest historical hydraulic Au-mines. The
presence of a lead isotope composition, such as that in the
Tower Bridge sample, that is intermediate between that of
the other Sacramento River colloids and the measured com-
position of hydraulic Au-mining sediments supports the
conclusion that the hydraulic Au-mining sediments are a
mixing end-member in the Sacramento River. The fact that
the Tower Bridge (#10) sample was collected during a per-
iod of high river discharge is interpreted to indicate that a
component of high-ratio hydraulic Au-mining sediment
was re-suspended from riverbed sediments or advected
from drainage basin soils, accounting for the higher lead
isotope ratio of the sample.

Lead from the high-ratio hydraulic Au-mining sediment
is the best explanation for the linear trend away from gas-
oline values seen in colloids and Sacramento riverbed sedi-
ment samples. A field of lead isotope compositions derived
from hydraulic Au-mining sediments was first defined in a
previous study (Fig. 6; Dunlap et al., 2000) by direct anal-
ysis of sediments from the Malakoff Diggins
(206Pb/207Pb = 1.2250–1.2417 and 208Pb/207Pb = 2.5013–
2.5161), the largest of the historical hydraulic Au-mining
operations, located on the Yuba River (Fig. 1). The high-
ratio hydraulic Au-mine sediments in this study confirm
and slightly extend the field first defined by Dunlap et al.,
2000 (Figs. 7 and 8). In fact, the linear regression through
the colloid samples appears to indicate that some hydraulic
Au-mining sediments may have lower 206Pb/207Pb than has
been directly measured.

The high-ratio hydraulic Au-mining sediment is inter-
preted to represent the dominant hydraulic Au-mining con-
tribution to the Sacramento River because samples from
the largest hydraulic mine at Malakoff Diggins primarily
fall within this field and because an increase in lead isotope
ratios above pre-anthropogenic values is in fact observed in
San Francisco Bay sediment cores at the onset of hydraulic
Au-mining (Dunlap et al., 2000).

The low-ratio hydraulic Au-mining sediments measured
in this study have lead isotope ratios indistinguishable from
those of the sediments in pre-anthropogenic San Francisco
Bay core bottoms. This confirms that the sediments in the
pre-anthropogenic core bottoms are consistent in lead iso-
tope composition with sediments of the Sierra Nevada foot-
hills, strengthening the interpretation in previous studies
that the pre-anthropogenic core bottoms record the prevail-
ing pre-anthropogenic lead isotope composition of the sed-
iment load in the Sacramento River.

Hydraulic Au-mining also occurred in the American
River basin, and the isotopic composition of a colloid sam-
ple from Tower Bridge (site #10; 206Pb/207Pb = 1.2176 and
208Pb/207Pb = 2.4985), taken from below the confluence of
the American River with the Sacramento River, is inter-
preted to record the influence of hydraulic Au-mining
deposits in the American River basin, the first indication
of that signature.

5.4.2. Quantifying mixing proportions

Using the lead isotopic data in this study, the propor-
tions of gasoline lead and high-ratio hydraulic Au-mining
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lead contributing to the lead isotope composition of Sacra-
mento River colloids outside of the Cu-mining region was
calculated. A mixing line can be constructed extending from
the average lead isotope composition of high-ratio hydrau-
lic Au-mining sediment (206Pb/207Pb = 1.235 and
208Pb/207Pb = 2.509) through the average isotopic composi-
tion of river water colloids (206Pb/207Pb = 1.206 and
208Pb/207Pb = 2.468). Such a mixing line intersects the field
of gasoline lead isotope ratios over a range of values
(206Pb/207Pb = 1.185–1.194 and 208Pb/207Pb = 2.437–
2.448), resulting in a calculated contribution of 57–67% gas-
oline lead and 43–33% high-ratio hydraulic Au-mining lead
to the lead in river water colloids. This result is consistent
with previous estimates based on samples of Sacramento
River water collected at its inflow to San Francisco Bay
estuary (Dunlap et al., 2000; Steding et al., 2000). This inde-
pendent corroboration of those estimates demonstrates that
lead from past gasoline emissions is the dominant compo-
nent of lead in the Sacramento River along the 415 km
reach of the river from Bend Bridge (site #6) to San Fran-
cisco Bay-Delta estuary. Furthermore, the contribution of
lead from high-ratio hydraulic Au-mining sediments is evi-
denced along 126 km of the river from Verona to San Fran-
cisco Bay, a reach defined by the entry of the first river (the
Feather River) carrying hydraulic Au-mining sediment into
the Sacramento River system.
6. CONCLUSIONS

The lead isotopic data presented in this study demonstrate
that the present-day flux of lead in the Sacramento River sys-
tem is dominated by the admixture of historical industrial
lead sources. The water flowing in the Sacramento River be-
low Keswick Dam is influenced by metal sources at Iron
Mountain and other, isotopically distinct, Cu-mine inputs
upstream of Shasta Dam. The influence of lead from the
Cu-mine drainage upstream of Keswick Dam is confined to
a 60 km reach of the river extending to just downstream of
Keswick Reservoir due to the removal of lead by particle set-
tling. Bed sediments and suspended colloids collected in the
Cu-mining region exhibit a trend towards pre-anthropogenic
terrestrial lead compositions, whereas sediment and colloid
samples collected from outside of the Cu-mining region de-
fine a binary mixing trend between high-ratio hydraulic
Au-mining lead and past leaded gasoline emissions. These
two sources dominate lead inputs to the Sacramento River
outside of the Cu-mining region, confirming previous studies
that identified hydraulic Au-mining and leaded gasoline lead
(but not West Shasta Cu-mining district lead) in dated river-
mouth sediment cores.

This study estimates that, outside of the Cu-mining re-
gion, 57–67% of the lead in the Sacramento River is derived
from past gasoline emissions whereas 33–43% is derived
from hydraulic Au-mining sediment. This estimate from
upstream data is in agreement with previous estimates made
from the isotopic compositions of water samples from the
Sacramento/San Joaquin River delta (Dunlap et al., 2000;
Steding et al., 2000), and this study is the first to directly
measure the dominance of lead from past gasoline emis-
sions throughout a large (>160,000 km2) riparian system.
Furthermore, the data show that the flow into the
Sacramento River of lead from high-ratio hydraulic Au-
mining sediment and sediments contaminated with lead
from leaded gasoline is an ongoing process. Periods of
high surface runoff and river discharge mobilize addi-
tional fluxes of lead from these two contaminant lead
sources and carry them into the river. These pulses of
lead driven by rainfall events suggest a direct link can ex-
ist between local climate change and the transport of
toxic metals in surface waters.

Finally, the pattern and controls on lead movement in
the Sacramento River provide direct insight into the origin,
fate, and transport of other contaminant metals that can
travel with sediments in the system. Mercury, for example,
was commonly used to extract gold from hydraulic Au-
mining in the Sierra Nevada (Alpers et al., 2005), and mer-
cury concentrations correlate closely with lead in recently
deposited sediments in Englebright Lake, a reservoir on
the Yuba River that was the site of extensive historical gold
mining activity (Alpers et al., 2006). Deposits of sediment
with elevated mercury concentrations accumulated in the
San Francisco Bay-Delta estuary after having been washed
down the Sacramento River with hydraulic Au-mining sed-
iments in the past (e.g., Hornberger et al., 1999; Roth et al.,
2001). It is clear from this study that lead and other con-
taminants such as mercury, representing legacy anthropo-
genic sources, continue to enter the Sacramento River
from its Sierra Nevada tributaries.
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