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Water-Level Change and Subsidence 
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Subsidence:  
 In1960s, groundwater 

pumping caused water 
levels to decline 

 Water-level declines 
cause compaction of 
fine-grained deposits, 
which results in 
subsidence 

 Surface-water deliveries 
since the late 1960s 
have reduced the 
dependence on 
groundwater 

 Water levels are again 
reaching their historic 
lows and subsidence 
may be renewed 

 Management   
constraint 
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Historical and 
Recent 
Subsidence 

Recent more extensive 
 
Both cut across existing canals 
 
Canals may be affected by land 
subsidence and differential land 
subsidence 
 
Additional pumpage to 
supplement reductions in surface-
water deliveries may additionally 
affect land subsidence near Delta-
Mendota and California Aqueduct 
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Location of historical 
extensometers used to 
measure subsidence, 
extensometers that can 
possibly be refurbished, 
continuous GPS sites, 
and selected wells in the 
San Joaquin Valley. 
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Parameters needed for Quantitative 
Subsidence Assessments 

 
 

• Preconsolidation Head (Stress) 
• Vertical Hydraulic Conductivity 
• Specific Storage (compressibility) 
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Preconsolidation Stress 

• Estimate preconsolidation stress using 
– Head/subsidence history 
– Consolidation tests 
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Preconsolidation stress:  
estimated from ground-water level and borehole 

extensometer data 

Pixley, California 
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Antelope Valley, 
California 

Preconsolidation stress:  
estimated from ground-water level and spirit leveling data 
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Preconsolidation stress: 
1-D vertical, drained consolidation tests of clay and sand  

 

Preconsolidation 
stress thresholds 
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Parameters needed for Quantitative 
Subsidence Assessments 

 
 

• Preconsolidation Head (Stress) 
• Vertical Hydraulic Conductivity 
• Specific Storage (compressibility) 
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Vertical Hydraulic Conductivity 

• Literature 
– Neuzil, C.E., 1994, How permeable are clays and 

shales?, WRR v. 30, no. 2 
• Lab tests 

– Stand alone 
• ASTM D5084-03 Standard Test Methods for 

Measurement of Hydraulic Conductivity of Saturated 
Porous Materials Using a Flexible Wall Permeameter 

– Part of consolidation tests 
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Vertical Hydraulic Conductivity:  
Stand Alone 

• Generally decreasing Kv with depth For 
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Vertical Hydraulic Conductivity:  
Consolidation Tests 

• Consolidometer as a variable-head 
permeameter at different loads 
 

Kv = cv(γw)(eo-e)/Δp(1+eo) 
 

•  cv is coefficient of consolidation 
•  γw is specific weight of water 
•  eo and e are void ratios at the start and end of load 
increment, respectively 
•  Δp is the load increment 
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Typical Ranges of Hydraulic Conductivity 
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Parameters needed for Quantitative 
Subsidence Assessments 

 
 

• Preconsolidation Head (Stress) 
• Vertical Hydraulic Conductivity 
• Specific Storage (compressibility) 
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Specific Storage (Compressibility) 

• Aquitard 
– Skeletal inelastic (S'skv) 
– Skeletal elastic (S'ske) 

• Aquifer 
– Skeletal elastic (Sske) 

• Aquifer system 
– Skeletal elastic (S*ske) 
– Skeletal inelastic (S*skv) 
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Specific Storage Data Sources 

• Literature 
– Elastic (S*ske) and inelastic (S'skv) values tend to fall in a 

narrow range  
• Aquifer tests 

– Focus on coarse-grained units (Sse) 
• Stress/strain analyses (Riley, 1969) 

– Extensometer/head time series (S*ske & S*skv) 
• Focus on coarse-grained & quickly equilibrating (thin) fine-grained 

units 
– Consolidation tests (Sskv) 

• Tend to focus on fine-grained units, but can be used for coarse-
grained units For 
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Typical Ranges of Specific Storage 
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Specific Storage: Aquifer Tests 

• Average Sse for coarse-grained sediment 
– Not just the skeletal component, but also includes 

the storage attributed to the compressibility of water 
• Constrained to screened interval 
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Specific Storage: Stress/Strain 
Analyses (Field Measurements) 

• S*ke  (aquifer system)  
• S'kv (thin aquitards) 
• Concurrent measurements of: 

– Stress: water level measurements 
– Strain: borehole extensometer measurements 
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In-situ determination of skeletal storage values from 
stress-strain observations 

Slope of inelastic limbs 

Slope of elastic limbs 

A 

A’ 

B’ 

B 

Pixley, California 

Elastic (B – B’) 
S*ke = 1.1 x 10-3 

S*ske = (S*ke)/405 m = 9.3 x 10-6  m-1 
Riley, 1969 

S*k = 5.7 x 10-2 
S*sk = (S*k)/405 m = 4.6 x 10-4  m-1 
 

Inelastic (A – A’) 

! Inverse slopes ! 
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Specific Storage: Stress/Strain Analyses 
(Lab Measurements) 

1-D Consolidation Measurements of Core 
• S^skv and S^ske (^ denotes ‘sample’) 
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Specific Storage (compressibility): 
1-D vertical, drained consolidation tests of clay and sand  

 

α (compressibilities: 
elastic and inelastic) 
computed from slope of 
strain-stress relations 

S^skv = K^v/C^v 

Cv = coefficient 
of consolidation For 
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Example Output for A 1-D Step Consolidation Test 
Santa Clara valley -- Guadalupe Multiple-Well Monitoring Site Core No. 114 (175—176.5 meters depth) 

Summary of Core Properties 
Cc = 0.29 Cr = 0.03 

P’ = 30 kg/cm2 

eo = .52 

Sskv = 4.2 x 10-4 m-1 

Sske = 4.3 x 10-5 m-1 

Ratio Sskv/Sske = 10 For 
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 Use of Well and Consolidation tests 

Aquifer Properties for Flow Model 
 (1) Slug Tests from Wells  Horizontal  
  Hydraulic Conductivity 
 (2) Core Hydraulic Tests  Porosity & Vertical 
  Conductivity (aquifers and confining  
  beds) 
Subsidence Properties for Flow Model 
 (1) Consolidation Tests  Elastic and Inelastic 
  Specific Storage (Compressibility) &  
  Vertical Conductivity (Fine grained  
  layers/Corcoran) 
 (2) Critical Head  Transition from Elastic to 
  Inelastic (Permanent) Subsidence 
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Ranges of relevant mechanical and fluid-flow 
properties 

Unconsolidated 
Aquifer 
Systems 

Skeletal Specific 
Storage, m-1 

Hydraulic 
Conductivity, 

md-1 

Time 
Constant, 

yrs 

Aquifer-system 
component Sske Sskv Kv K τ 

Aquitards 5 × 10-6 – 
5 × 10-5 

10-5 –  
3 × 10-4 

10-6 – 
10-3 

10-6 –
10-3 0 - 1350 

Aquifers  10-6 –  
10-5 — 10-4 – 

105  
10-2 – 

105 — 

Specific storage of water ≈ 1.38 × 10-6 m-1 (n = 0.32) For 
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Parameters needed for Simulation of 
Subsidence 

 
 

• Critical Head Preconsolidation Head 
(Stress) (Specified in the SUB Pkg) 

• Vertical Hydraulic Conductivity (Specified 
in the LPF Pkg Instantaneous Compaction & 
or delayed Compaction) 

• Elastic & Inelastic Storage  
Compressibility (Specified in the SUB Pkg) For 
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Alternatives for Simulation of 
Subsidence 

SUB Pkg  MODFLOW-2000 Ground-Water Model—User Guide to the Subsidence 
and Aquifer-System Compaction (SUB) Package 
By Jörn Hoffmann, S.A. Leake, D.L. Galloway, and Alica M. Wilson USGS OFR03-233 

K’v 
Kv1 

Kv2 

Kv3 

K’v1-2 

K’v2-3 
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Critical Head for CVHM 
 Initial Values Derived from 2-layer RASA-1 Model 

(Williamson et al., 1988) 
 Values extrapolated between additional layers based on 

starting head and top of layer and previous 1961 heads 
(minimum  whichever were lower) 

 Generally Critical Heads represent conditions of  
overconsolidation 

 Range of Critical heads (meters above mean sea level): 
Layer Number Minimum       Maximum       Mean 
1                              -6.4          191.8 36.9 
2   -6.8          191.5 39.6 
3  -18.4          265.2 44.8 
4  -104.2          220.8 41.5 
5  -185.1          220.8 36.7 
6  -269.9          209.5 36.1 
7  -254          197. 35.6 
8  -253.2          184.5 35.1 
9  -262.9           175.6             35.3 
10  -169.1           171.8             37.2 
 For 

Inf
orm

ati
on

 O
nly



Elastic Storage for CVHM 
 Initial Values of Specific Storage derived from earlier Subsidence work see summary in 

table C8, p157 in USGS Prof. Paper 1766) Generally typical elastic compressibility of 
alluvial material 

 Sske – elastic   Coarse-grained = 1.4 - 1.0×10-6 per ft; 
    Fine-grained = 2.0×10–6 to 7.5×10–6 per ft; 
    Fine-grained = 4.5×10–6 per ft 
Values extrapolated to each model cell based on product of Sske and texture data aggregate 
thickness within each cell for each layer. 
 Range of Ske values (dimensionless): 
Layer Number Minimum       Maximum       Mean 
1   3.8e-5          6.54e-4 2.8e-4 
2   2.9e-5          4.5e-4 3.2e-4 
3  2.9e-5          2.8e-3 6.1e-4 
4  1.0e-5          1.8e-2 3.2e-4 
5  1.0e-5          2.2e-2 3.2e-4 
6  3.04e-4          8.37e-4 6.7e-4 
7  4.13e-4          1.1e-3 8.4e-4 
8  5.09e-4          1.3e-3 9.9e-4 
9  5.8e-4          1.4e-3 1.19e-3 
10  6.5e-4          1.7e-3 1.27e-3 
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Fine-grained Aggregate Thickness for CVHM 

 Texture Model of CVHM (Faunt et al., 2009) 
 Values extrapolated between additional layers based on 

textural model data for each layer. 
 Range of aggregate thickness of fine-grained deposits 

(meters above mean sea level): 
Layer Number Minimum       Maximum       Mean 
1                              1.57          43.4 17. 
2   1.35          30.5 19.4 
3  0.73          186. 36.8 
4  .0001          15.3 2.5 
5  .00015          38.1 2.6 
6   9.2          55.6 40.7 
7  14.2          69.7 51.0 
8  18.2          85.1 59.9 
9  20.1          93.9 69. 
10  21.7         110.9 76.1 
 

For 
Inf

orm
ati

on
 O

nly



(1) SUB Package for MODFLOW― “no-delay” beds 
•Critical head 
•Elastic storage factor- Sske×btotal 

•Inelastic storage factor- Sskv×btotal  

(2) SUB Package for MODFLOW― “delay” beds 
•Critical head 
•Representative thickness of interbeds- bavg 
•Vertical hydraulic conductivity of interbeds, K’v 

•Elastic skeletal specific storage- Sske 
•Inelastic skeletal specific storage- Sskv 

Parameters needed to identify or estimate for basin-
scale subsidence models 
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Aquifer-system storage coefficients: 
 elastic and inelastic coefficients 

Se
* =     S'ke +   Ske +   S*

w     σe < σe(max)  

S*   = 

(subscript ‘e’ denotes elastic property, subscript 
‘v’ denotes ‘virgin’ or inelastic property) 

Sv
* »     S'kv σe > σe(max) 

For compacting aquifer systems, because Skv ~ 0, and S'kv >> S*
w the 

inelastic storage coefficient of the aquifer system is approximately 
equal to the interbed inelastic skeletal storage coefficient,  S*

v » 
S'kv.  For 
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CONSTRUCTION OF LAYER FLOW PROPERTIES 
 (Horizontal Hydraulic Conductivity (HK), Vertical Hydraulic Conductivity (VK), 
Specific Storage (SS)) 
Cell-by-Cell Fraction of Coarse-
Grained Sediment 
Arrays for each Layer from 
Hydrogeologic Framework 
Model (HFM) 

Zone Definition Files  Defines 
arrays that represent cell-by-cell 
parameter definition of each zone in 
each layer (Indicator arrays) 

Definition of Global Scalar 
Values for HK, VK, & SS 
Ex. Kc, Kf  for HK for each layer 
or subregions within layers 

Construction of Basic Model-Layer 
Hydraulic Properties 

Layer Property Flow 
Package  Construction of 
Cell-by-Cell Hydraulic 
Properties Used by MF2K5 

Cell-by-Cell Calculation of HK, 
VK, & SS for Coarse & Fine-
grained Fractions for each Layer 

Cell-by-Cell Calculation of 
Arithmetic sum for HK & SS, 
Power Mean for VK for each 
Layer 

Parameter Definition File  
Defines Parameter Value 
Multiplier 

Cell-by-Cell Layer Elevation 
Arrays for each Layer from 
HFM 

Multiplier Package 
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TRANSMISSION HYDRAULIC PROPERTIES (Based on Texture estimates of Alluvial Aquifer Systems) 
Aquifer/Aquitard Horizontal Conductivity (HK)  Weighted Arithmetic Mean 
HK  Kh = (Kcoarse * Fcoarse) + (Kfine * Ffine) 
 Fcoarse is fraction of coarse-grained sediment per model cell relative to thickness 
 Ffine is fraction of fine-grained sediment per model cell (1–Fcoarse) relative to thickness 
 
Aquifer /Aquitard Vertical Hydraulic Conductivity (VK)  Power Mean 
VK  Kv = [(K pcoarse * Fcoarse) + (K pfine * Ffine)]1/p 

 Fcoarse is fraction of coarse-grained sediment per model cell,  
 Ffine is fraction of fine-grained sediment per model cell (1–Fcoarse) 
 P is power  0=geometric mean (decreased anisotropy) 
     -1=harmonic mean (increased anisotropy) (ex -.8) 
OR for Compressible Fine-Grained Layers  Stress-Dependent Vertical Hydraulic Conductivity 
VK  

CONSTRUCTION OF HYDRAULIC PROPERTIES for LPF and SUB 
package for Regional Hydrologic Models 
(1) LPF PackageHorizontal Hydraulic Conductivity (HK), Vertical Hydraulic 
 Conductivity (VK), Aquifer Specific Storage (SS))  
(2) SUB Package Elastic and Inelastic Storage 
(3) Hydraulic properties computed internally in MODFLOW using the Multiplier 
 Package (Not currently available for SUB Package Computed externally a priori) 
(4) Also Define LAYER ZONE ARRAYS In Zone Package & Parameters in PVAL 

Kv = cv(γw)(eo-e)/Δp(1+eo) 
 
•  cv is coefficient of consolidation 
•  γw is specific weight of water 
•  eo and e are void ratios at the start and end of load increment, respectively 
•  Δp is the load increment 
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LPF Aquifer Specific Storage (SS)  Weighted Arithmetic Mean for LPF of  
 Compressibility of Water or Specific Yield (Computed with Multiplier Package) 
SS  Ss = Ssw + Sy/(Total Thickness for each uppermost cell in a model layer) 
 Sy= Specific Yield 
 Ssw= Specific Storage from Compressibility of Water (Phicoarse * Fcoarse + Phifine * Ffine)* Bw 
 Phicoarse = Porosity of coarse-grained sediment 

 Phifine = Porosity of fine-grained sediment 
 Bw = Compressibility of water 
SUB Fine-Grained Elastic Storage (S’ke ) Weighted Arithmetic Mean for SUB Package 
S’ ke = (S’skeCoarse + S’skeFine) * Vertical Thickness of each model cell 
        S’skeCoarse= Texture & Porosity weighted Skeletal Elastic Specific Storage of Coarse-grained sediment 
                = (1- Phicoarse) * Fcoarse * (S’skec) 
        S’skeFine= Texture & Porosity weighted Skeletal Elastic Specific Storage of Fine-grained sediment  
             = (1- Phifine) * Ffine * (S’skef) 
 S’skec = Skeletal Specific Storage of Coarse-grained sediment  
  (estimated from Aquifer Tests) 
  S’skef = Skeletal Specific Storage of Fine-grained sediment  
  (estimated from extensometer or consolidation tests) 
S’kv = (S’skvFine) * Vertical Thickness of each model cell 
        S’skvFine= Texture &Porosity weighted Skeletal  Inelastic Specific Storage of Fine-grained sediment  
             = (1- Phifine) * Ffine * (S’skvf) 
  S’skvf = Skeletal Inelastic Specific Storage of Fine-grained sediment  
  (estimated from extensometer or consolidation tests) 

CONSTRUCTION OF HYDRAULIC PROPERTIES for LPF 
and SUB package for Regional Hydrologic Models 
(Continued) 
LPF PackageAquifer Specific Storage (SS)  Also Define 
LAYER ZONE ARRAYS In Zone Package & Parameters in PVAL 
SUB Package  Elastic and Inelastic Storage 
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Model Simulations:  
Parameter Estimation 

 Subsidence Observations needed for 
subsidence models to constrain 
parameter estimation 
 Accuracy 
 Importance 

 Geohydrologic  
 Framework allows 
 Parameter Estimation 
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Subsidence Model  Construction 
Conceptual Model 

Geologic Framework ModelHydrologic Model 

ID Subsidence Processes & Properties 
Management Factors 

Regionalize Properties & Parameters 

Simulation, Analysis, & Comparison of  
Measured and Simulated Data 

Hydrologic  Flow Analysis 
(Conjunctive Use) 

MODFLOW provides Multiple Approaches to Simulation 
of Land Subsidence For 

Inf
orm

ati
on

 O
nly



California’s Central Val  

Recent MODFLOW Developments  More Complete 
Hydrologic Models  More Realistic Simulations  Better 
Analysis of Resources within the entire Hydrologic Cycle of 

Regional Aquifer Systems 

USGS Models  
http://water.usgs.gov/software/ground_water.html 

Thank You 
 
Questions? 
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